![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Geometry > General
Along with many small improvements, this revised edition contains van Yzeren's new proof of Pascal's theorem (1.7) and, in Chapter 2, an improved treatment of order and sense. The Sylvester-Gallai theorem, instead of being introduced as a curiosity, is now used as an essential step in the theory of harmonic separation (3.34). This makes the logi cal development self-contained: the footnotes involving the References (pp. 214-216) are for comparison with earlier treatments, and to give credit where it is due, not to fill gaps in the argument. H.S.M.C. November 1992 v Preface to the Second Edition Why should one study the real plane? To this question, put by those who advocate the complex plane, or geometry over a general field, I would reply that the real plane is an easy first step. Most of the prop erties are closely analogous, and the real field has the advantage of intuitive accessibility. Moreover, real geometry is exactly what is needed for the projective approach to non* Euclidean geometry. Instead of introducing the affine and Euclidean metrics as in Chapters 8 and 9, we could just as well take the locus of 'points at infinity' to be a conic, or replace the absolute involution by an absolute polarity.
Pencils of Cubics and Algebraic Curves in the Real Projective Plane thoroughly examines the combinatorial configurations of n generic points in RP(2). Especially how it is the data describing the mutual position of each point with respect to lines and conics passing through others. The first section in this book answers questions such as, can one count the combinatorial configurations up to the action of the symmetric group? How are they pairwise connected via almost generic configurations? These questions are addressed using rational cubics and pencils of cubics for n = 6 and 7. The book's second section deals with configurations of eight points in the convex position. Both the combinatorial configurations and combinatorial pencils are classified up to the action of the dihedral group D8. Finally, the third section contains plentiful applications and results around Hilbert's sixteenth problem. The author meticulously wrote this book based upon years of research devoted to the topic. The book is particularly useful for researchers and graduate students interested in topology, algebraic geometry and combinatorics. Features: Examines how the shape of pencils depends on the corresponding configurations of points Includes topology of real algebraic curves Contains numerous applications and results around Hilbert's sixteenth problem About the Author: Severine Fiedler-le Touze has published several papers on this topic and has been invited to present at many conferences. She holds a Ph.D. from University Rennes1 and was a post-doc at the Mathematical Sciences Research Institute in Berkeley, California.
This reference provides an up to date and sound theoretical foundation for finite element methods in computational electromagnetism. The emphasis is on finite element methods for scattering problems that involve the solution of Maxwell's equations on infinite domains, and special attention is given to error analysis of edge FEM that are particularly well suited to Maxwell's equations .
This elegant little book discusses a famous problem that helped to define the field now known as topology: What is the minimum number of colors required to print a map such that no two adjoining countries have the same color, no matter how convoluted their boundaries. Many famous mathematicians have worked on the problem, but the proof eluded fomulation until the 1950s, when it was finally cracked with a brute-force approach using a computer. The book begins by discussing the history of the problem, and then goes into the mathematics, both pleasantly enough that anyone with an elementary knowledge of geometry can follow it, and still with enough rigor that a mathematician can also read it with pleasure. The authors discuss the mathematics as well as the philosophical debate that ensued when the proof was announced: Just what is a mathematical proof, if it takes a computer to provide one -- and is such a thing a proof at all?
Eleven of the fourteen invited speakers at a symposium held by the Oxford Mathematical Institute in June 1972 have revised their contributions and submitted them for publication in this volume. The present papers do not necessarily closely correspond with the original talks, as it was the intention of the volume editor to make this book of mathematical rather than historical interest. The contributions will be of value to workers in topology in universities and polytechnics.
This detailed yet accessible text provides an essential introduction to the advanced mathematical methods at the core of theoretical physics. The book steadily develops the key concepts required for an understanding of symmetry principles and topological structures, such as group theory, differentiable manifolds, Riemannian geometry, and Lie algebras. Based on a course for senior undergraduate students of physics, it is written in a clear, pedagogical style and would also be valuable to students in other areas of science and engineering. The material has been subject to more than twenty years of feedback from students, ensuring that explanations and examples are lucid and considered, and numerous worked examples and exercises reinforce key concepts and further strengthen readers' understanding. This text unites a wide variety of important topics that are often scattered across different books, and provides a solid platform for more specialized study or research.
This study examines the origins of geometry in and out of the intuitively given everyday lifeworlds of children in a second-grade mathematics class. These lifeworlds, though pre-geometric, are not without model objects that denote and come to anchor geometric idealities that they will understand at later points in their lives. Roth's analyses explain how geometry, an objective science, arises anew from the pre-scientific but nevertheless methodic actions of children in a structured world always already shot through with significations. He presents a way of understanding knowing and learning in mathematics that differs from other current approaches, using case studies to demonstrate contradictions and incongruences of other theories - Immanuel Kant, Jean Piaget, and more recent forms of (radical, social) constructivism, embodiment theories, and enactivism - and to show how material phenomenology fused with phenomenological sociology provides answers to the problems that these other paradigms do not answer.
Series of scalars, vectors, or functions are among the fundamental objects of mathematical analysis. When the arrangement of the terms is fixed, investigating a series amounts to investigating the sequence of its partial sums. In this case the theory of series is a part of the theory of sequences, which deals with their convergence, asymptotic behavior, etc. The specific character of the theory of series manifests itself when one considers rearrangements (permutations) of the terms of a series, which brings combinatorial considerations into the problems studied. The phenomenon that a numerical series can change its sum when the order of its terms is changed is one of the most impressive facts encountered in a university analysis course. The present book is devoted precisely to this aspect of the theory of series whose terms are elements of Banach (as well as other topological linear) spaces. The exposition focuses on two complementary problems. The first is to char acterize those series in a given space that remain convergent (and have the same sum) for any rearrangement of their terms; such series are usually called uncon ditionally convergent. The second problem is, when a series converges only for certain rearrangements of its terms (in other words, converges conditionally), to describe its sum range, i.e., the set of sums of all its convergent rearrangements."
Gorenstein homological algebra is an important area of mathematics, with applications in commutative and noncommutative algebra, model category theory, representation theory, and algebraic geometry. While in classical homological algebra the existence of the projective, injective, and flat resolutions over arbitrary rings are well known, things are a little different when it comes to Gorenstein homological algebra. The main open problems in this area deal with the existence of the Gorenstein injective, Gorenstein projective, and Gorenstein flat resolutions. Gorenstein Homological Algebra is especially suitable for graduate students interested in homological algebra and its applications.
This book and the following second volume is an introduction into
modern algebraic geometry. In the first volume the methods of
homological algebra, theory of sheaves, and sheaf cohomology are
developed. These methods are indispensable for modern algebraic
geometry, but they are also fundamental for other branches of
mathematics and of great interest in their own.
This book is an account of the combinatorics of projective spaces over a finite field, with special emphasis on one and two dimensions. With its successor volumes, Finite projective spaces over three dimensions (1985), which is devoted to three dimensions, and General Galois geometries (1991), on a general dimension, it provides a comprehensive treatise of this area of mathematics. The area is interesting in itself, but is important for its applications to coding theory and statistics, and its use of group theory, algebraic geometry, and number theory. This edition is a complete reworking of the first edition. The chapters bear almost the same titles as the first edition, but every chapter has been changed. The most significant changes are to Chapters 2, 10, 12, 13, which respectively describe generalities, the geometry of arcs in ovals, the geometry of arcs of higher degree, and blocking sets. The book is divided into three parts. The first part comprises two chapters, the first of which is a survey of finite fields; the second outlines the fundamental properties of projective spaces and their automorphisms, as well as properties of algebraic varieties and curves, in particular, that are used in the rest of the book and the accompanying two volumes. Parts II and III are entirely self-contained; all proofs of results are given. The second part comprises Chapters 3 to 5. They cover, in an arbitrary dimension, the properties of subspaces such as their number and characterization, of partitions into both subspaces and subgeometries, and of quadrics and Hermitian varieties, as well as polarities. Part III is a detailed account of the line and the plane. In the plane, fundamental properties are first revisited without much resort to the generalities of Parts I and II. Then, the structure of arcs and their relation to curves is described; this includes arcs both of degree two and higher degrees. There are further chapters on blocking sets and on small planes, which means of orders up to thirteen. A comprehensive bibliography of more than 3000 items is provided. At the end of each chapter is a section, Notes and References, which attributes proofs, includes further comments, and lists every relevant reference from the bibliography.
This book provides a number of combinatorial tools that allow a systematic study of very general discrete spaces involved in the context of discrete quantum gravity. In any dimension D, we can discretize Euclidean gravity in the absence of matter over random discrete spaces obtained by gluing families of polytopes together in all possible ways. These spaces are then classified according to their curvature. In D=2, it results in a theory of random discrete spheres, which converge in the continuum limit towards the Brownian sphere, a random fractal space interpreted as a quantum random space-time. In this limit, the continuous Liouville theory of D=2 quantum gravity is recovered. Previous results in higher dimension regarded triangulations, converging towards a continuum random tree, or gluings of simple building blocks of small sizes, for which multi-trace matrix model results are recovered in any even dimension. In this book, the author develops a bijection with stacked two-dimensional discrete surfaces for the most general colored building blocks, and details how it can be used to classify colored discrete spaces according to their curvature. The way in which this combinatorial problem arrises in discrete quantum gravity and random tensor models is discussed in detail.
This volume focuses on discussing the interplay between the analysis, as exemplified by the eta invariant and other spectral invariants, the number theory, as exemplified by the relevant Dedekind sums and Rademacher reciprocity, the algebraic topology, as exemplified by the equivariant bordism groups, K-theory groups, and connective K-theory groups, and the geometry of spherical space forms, as exemplified by the Smith homomorphism. These are used to study the existence of metrics of positive scalar curvature on spin manifolds of dimension at least 5 whose fundamental group is a spherical space form group.This volume is a completely rewritten revision of the first edition. The underlying organization is modified to provide a better organized and more coherent treatment of the material involved. In addition, approximately 100 pages have been added to study the existence of metrics of positive scalar curvature on spin manifolds of dimension at least 5 whose fundamental group is a spherical space form group. We have chosen to focus on the geometric aspect of the theory rather than more abstract algebraic constructions (like the assembly map) and to restrict our attention to spherical space forms rather than more general and more complicated geometrical examples to avoid losing contact with the fundamental geometry which is involved.
Origami5 continues in the excellent tradition of its four previous incarnations, documenting work presented at an extraordinary series of meetings that explored the connections between origami, mathematics, science, technology, education, and other academic fields. The fifth such meeting, 5OSME (July 13-17, 2010, Singapore Management University) followed the precedent previous meetings to explore the interdisciplinary connections between origami and the real world. This book begins with a section on origami history, art, and design. It is followed by sections on origami in education and origami science, engineering, and technology, and culminates with a section on origami mathematics the pairing that inspired the original meeting. Within this one volume, you will find a broad selection of historical information, artists descriptions of their processes, various perspectives and approaches to the use of origami in education, mathematical tools for origami design, applications of folding in engineering and technology, as well as original and cutting-edge research on the mathematical underpinnings of origami.
'Everyone interested in geometric dissections, and this kind of puzzles, either mathematically or recreationally will embrace this publication. But also the readers interested in the history and certainly those who became curious about this mystery man and his manuscript, after reading FredericksonaEURO (TM)s 2006 book, will be fully satisfied with this respectful reproduction eventually made available for a general public.'European Mathematical SocietyA geometric dissection is a cutting of a geometric figure (such as a regular polygon, or a star, or a cross) into pieces that we can rearrange to form another geometric figure. The best dissections are beautiful and possess economy (few pieces), symmetry, or hingeability. They are often challenging to discover.Ernest Irving Freese was an architect who lived and worked in Los Angeles until his death in 1957. Shortly before he passed away, he completed a 200-page manuscript on geometric dissection, the first book-length treatment on that subject. Freese included elegant drawings of dissections that were both original and clever. After his death the manuscript lay forgotten in his former house until Greg Frederickson set in motion its recovery in 2003. What a treat that it was rescued!Frederickson's book sketches a history of geometric dissections and a biography of Freese, followed by a refurbished copy of Freese's manuscript interleaved with a commentary that highlights Freese's major contributions as well as singular improvements made by Frederickson and others after Freese.This book introduces Freese and his creations to math puzzle enthusiasts, by way of his engaging manuscript, his wild adventures, and his lovely dissections. Frederickson also includes remarkable designs that improve on Freese's work, and packs this book with nifty illustrations and tidbits that may well leave you speechless!
'Everyone interested in geometric dissections, and this kind of puzzles, either mathematically or recreationally will embrace this publication. But also the readers interested in the history and certainly those who became curious about this mystery man and his manuscript, after reading FredericksonaEURO (TM)s 2006 book, will be fully satisfied with this respectful reproduction eventually made available for a general public.'European Mathematical SocietyA geometric dissection is a cutting of a geometric figure (such as a regular polygon, or a star, or a cross) into pieces that we can rearrange to form another geometric figure. The best dissections are beautiful and possess economy (few pieces), symmetry, or hingeability. They are often challenging to discover.Ernest Irving Freese was an architect who lived and worked in Los Angeles until his death in 1957. Shortly before he passed away, he completed a 200-page manuscript on geometric dissection, the first book-length treatment on that subject. Freese included elegant drawings of dissections that were both original and clever. After his death the manuscript lay forgotten in his former house until Greg Frederickson set in motion its recovery in 2003. What a treat that it was rescued!Frederickson's book sketches a history of geometric dissections and a biography of Freese, followed by a refurbished copy of Freese's manuscript interleaved with a commentary that highlights Freese's major contributions as well as singular improvements made by Frederickson and others after Freese.This book introduces Freese and his creations to math puzzle enthusiasts, by way of his engaging manuscript, his wild adventures, and his lovely dissections. Frederickson also includes remarkable designs that improve on Freese's work, and packs this book with nifty illustrations and tidbits that may well leave you speechless!
This Research Note explores existence and multiplicity questions for periodic solutions of first order, non-convex Hamiltonian systems. It introduces a new Morse (index) theory that is easier to use, less technical, and more flexible than existing theories and features techniques and results that, until now, have appeared only in scattered journals. Morse Theory for Hamiltonian Systems provides a detailed description of the Maslov index, introduces the notion of relative Morse index, and describes the functional setup for the variational theory of Hamiltonian systems, including a new proof of the equivalence between the Hamiltonian and the Lagrangian index. It also examines the superquadratic Hamiltonian, proving the existence of periodic orbits that do not necessarily satisfy the Rabinowitz condition, studies asymptotically linear systems in detail, and discusses the Arnold conjectures about the number of fixed points of Hamiltonian diffeomorphisms of compact symplectic manifolds. In six succinct chapters, the author provides a self-contained treatment with full proofs. The purely abstract functional aspects have been clearly separated from the applications to Hamiltonian systems, so many of the results can be applied in and other areas of current research, such as wave equations, Chern-Simon functionals, and Lorentzian geometry. Morse Theory for Hamiltonian Systems not only offers clear, well-written prose and a unified account of results and techniques, but it also stimulates curiosity by leading readers into the fascinating world of symplectic topology.
In industry and economics, the most common solutions of partial differential equations involving multivariate numerical integration over cuboids include techniques of iterated one-dimensional approximate integration. In geosciences, however, the integrals are extended over potato-like volumes (such as the ball, ellipsoid, geoid, or the Earth) and their boundary surfaces which require specific multi-variate approximate integration methods. Integration and Cubature Methods: A Geomathematically Oriented Course provides a basic foundation for students, researchers, and practitioners interested in precisely these areas, as well as breaking new ground in integration and cubature in geomathematics.
The Symbolic Universe considers the ways in which many leading mathematicians between 1890 and 1930 attempted to apply geometry to physics. It concentrates on responses to Einstein's theories of special and general relativity, but also considers the philosophical implications of these ideas.
'This book is a useful reference for faculty members involved in contest preparation or teaching Euclidean geometry at the college level.'MAA ReviewsThis new volume of the Mathematical Olympiad Series focuses on the topic of geometry. Basic and advanced theorems commonly seen in Mathematical Olympiad are introduced and illustrated with plenty of examples. Special techniques in solving various types of geometrical problems are also introduced, while the authors elaborate extensively on how to acquire an insight and develop strategies in tackling difficult geometrical problems.This book is suitable for any reader with elementary geometrical knowledge at the lower secondary level. Each chapter includes sufficient scaffolding and is comprehensive enough for the purpose of self-study. Readers who complete the chapters on the basic theorems and techniques would acquire a good foundation in geometry and may attempt to solve many geometrical problems in various mathematical competitions. Meanwhile, experienced contestants in Mathematical Olympiad competitions will find a large collection of problems pitched at competitions at the international level, with opportunities to practise and sharpen their problem-solving skills in geometry.
This solution manual accompanies the first part of the book An Illustrated Introduction toTopology and Homotopy by the same author. Except for a small number of exercises inthe first few sections, we provide solutions of the (228) odd-numbered problemsappearing in first part of the book (Topology). The primary targets of this manual are thestudents of topology. This set is not disjoint from the set of instructors of topologycourses, who may also find this manual useful as a source of examples, exam problems,etc.
This book discusses topics ranging from traditional areas of topology, such as knot theory and the topology of manifolds, to areas such as differential and algebraic geometry. It also discusses other topics such as three-manifolds, group actions, and algebraic varieties.
This book leads readers from a basic foundation to an advanced level understanding of geometry in advanced pure mathematics. Chapter by chapter, readers will be led from a foundation level understanding to advanced level understanding. This is the perfect text for graduate or PhD mathematical-science students looking for support in algebraic geometry, geometric group theory, modular group, holomorphic dynamics and hyperbolic geometry, syzygies and minimal resolutions, and minimal surfaces.Geometry in Advanced Pure Mathematics is the fourth volume of the LTCC Advanced Mathematics Series. This series is the first to provide advanced introductions to mathematical science topics to advanced students of mathematics. Edited by the three joint heads of the London Taught Course Centre for PhD Students in the Mathematical Sciences (LTCC), each book supports readers in broadening their mathematical knowledge outside of their immediate research disciplines while also covering specialized key areas.
Differential geometry and topology have become essential tools for many theoretical physicists. In particular, they are indispensable in theoretical studies of condensed matter physics, gravity, and particle physics. Geometry, Topology and Physics, Second Edition introduces the ideas and techniques of differential geometry and topology at a level suitable for postgraduate students and researchers in these fields. The second edition of this popular and established text incorporates a number of changes designed to meet the needs of the reader and reflect the development of the subject. The book features a considerably expanded first chapter, reviewing aspects of path integral quantization and gauge theories. Chapter 2 introduces the mathematical concepts of maps, vector spaces, and topology. The following chapters focus on more elaborate concepts in geometry and topology and discuss the application of these concepts to liquid crystals, superfluid helium, general relativity, and bosonic string theory. Later chapters unify geometry and topology, exploring fiber bundles, characteristic classes, and index theorems. New to this second edition is the proof of the index theorem in terms of supersymmetric quantum mechanics. The final two chapters are devoted to the most fascinating applications of geometry and topology in contemporary physics, namely the study of anomalies in gauge field theories and the analysis of Polakov's bosonic string theory from the geometrical point of view. Geometry, Topology and Physics, Second Edition is an ideal introduction to differential geometry and topology for postgraduate students and researchers in theoretical and mathematical physics.
'This book is a useful reference for faculty members involved in contest preparation or teaching Euclidean geometry at the college level.'MAA ReviewsThis new volume of the Mathematical Olympiad Series focuses on the topic of geometry. Basic and advanced theorems commonly seen in Mathematical Olympiad are introduced and illustrated with plenty of examples. Special techniques in solving various types of geometrical problems are also introduced, while the authors elaborate extensively on how to acquire an insight and develop strategies in tackling difficult geometrical problems.This book is suitable for any reader with elementary geometrical knowledge at the lower secondary level. Each chapter includes sufficient scaffolding and is comprehensive enough for the purpose of self-study. Readers who complete the chapters on the basic theorems and techniques would acquire a good foundation in geometry and may attempt to solve many geometrical problems in various mathematical competitions. Meanwhile, experienced contestants in Mathematical Olympiad competitions will find a large collection of problems pitched at competitions at the international level, with opportunities to practise and sharpen their problem-solving skills in geometry. |
You may like...
|