![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Geometry > General
This book collects papers based on the XXXVI Bialowieza Workshop on Geometric Methods in Physics, 2017. The Workshop, which attracts a community of experts active at the crossroads of mathematics and physics, represents a major annual event in the field. Based on presentations given at the Workshop, the papers gathered here are previously unpublished, at the cutting edge of current research, and primarily grounded in geometry and analysis, with applications to classical and quantum physics. In addition, a Special Session was dedicated to S. Twareque Ali, a distinguished mathematical physicist at Concordia University, Montreal, who passed away in January 2016. For the past six years, the Bialowieza Workshops have been complemented by a School on Geometry and Physics, comprising a series of advanced lectures for graduate students and early-career researchers. The extended abstracts of this year's lecture series are also included here. The unique character of the Workshop-and-School series is due in part to the venue: a famous historical, cultural and environmental site in the Bialowieza forest, a UNESCO World Heritage Centre in eastern Poland. Lectures are given in the Nature and Forest Museum, and local traditions are interwoven with the scientific activities.
Working out solutions to polynomial equations is a mathematical problem that dates from antiquity. Galois developed a theory in which the obstacle to solving a polynomial equation is an associated collection of symmetries. Obtaining a root requires "breaking" that symmetry. When the degree of an equation is at least five, Galois Theory established that there is no formula for the solutions like those found in lower degree cases. However, this negative result doesn't mean that the practice of equation-solving ends. In a recent breakthrough, Doyle and McMullen devised a solution to the fifth-degree equation that uses geometry, algebra, and dynamics to exploit icosahedral symmetry. Polynomials, Dynamics, and Choice: The Price We Pay for Symmetry is organized in two parts, the first of which develops an account of polynomial symmetry that relies on considerations of algebra and geometry. The second explores beyond polynomials to spaces consisting of choices ranging from mundane decisions to evolutionary algorithms that search for optimal outcomes. The two algorithms in Part I provide frameworks that capture structural issues that can arise in deliberative settings. While decision-making has been approached in mathematical terms, the novelty here is in the use of equation-solving algorithms to illuminate such problems. Features Treats the topic-familiar to many-of solving polynomial equations in a way that's dramatically different from what they saw in school Accessible to a general audience with limited mathematical background Abundant diagrams and graphics.
Working out solutions to polynomial equations is a mathematical problem that dates from antiquity. Galois developed a theory in which the obstacle to solving a polynomial equation is an associated collection of symmetries. Obtaining a root requires "breaking" that symmetry. When the degree of an equation is at least five, Galois Theory established that there is no formula for the solutions like those found in lower degree cases. However, this negative result doesn't mean that the practice of equation-solving ends. In a recent breakthrough, Doyle and McMullen devised a solution to the fifth-degree equation that uses geometry, algebra, and dynamics to exploit icosahedral symmetry. Polynomials, Dynamics, and Choice: The Price We Pay for Symmetry is organized in two parts, the first of which develops an account of polynomial symmetry that relies on considerations of algebra and geometry. The second explores beyond polynomials to spaces consisting of choices ranging from mundane decisions to evolutionary algorithms that search for optimal outcomes. The two algorithms in Part I provide frameworks that capture structural issues that can arise in deliberative settings. While decision-making has been approached in mathematical terms, the novelty here is in the use of equation-solving algorithms to illuminate such problems. Features Treats the topic-familiar to many-of solving polynomial equations in a way that's dramatically different from what they saw in school Accessible to a general audience with limited mathematical background Abundant diagrams and graphics.
Architecture of Mathematics describes the logical structure of Mathematics from its foundations to its real-world applications. It describes the many interweaving relationships between different areas of mathematics and its practical applications, and as such provides unique reading for professional mathematicians and nonmathematicians alike. This book can be a very important resource both for the teaching of mathematics and as a means to outline the research links between different subjects within and beyond the subject. Features All notions and properties are introduced logically and sequentially, to help the reader gradually build understanding. Focusses on illustrative examples that explain the meaning of mathematical objects and their properties. Suitable as a supplementary resource for teaching undergraduate mathematics, and as an aid to interdisciplinary research. Forming the reader's understanding of Mathematics as a unified science, the book helps to increase his general mathematical culture.
This book serves as a textbook for an introductory course in metric spaces for undergraduate or graduate students. The goal is to present the basics of metric spaces in a natural and intuitive way and encourage students to think geometrically while actively participating in the learning of this subject. In this book, the authors illustrated the strategy of the proofs of various theorems that motivate readers to complete them on their own. Bits of pertinent history are infused in the text, including brief biographies of some of the central players in the development of metric spaces. The textbook is divided into seven chapters that contain the main materials on metric spaces; namely, introductory concepts, completeness, compactness, connectedness, continuous functions and metric fixed point theorems with applications. Some of the noteworthy features of this book include * Diagrammatic illustrations that encourage readers to think geometrically * Focus on systematic strategy to generate ideas for the proofs of theorems * A wealth of remarks, observations along with a variety of exercises * Historical notes and brief biographies appearing throughout the text
This EMS volume consists of two parts, written by leading scientists in the field of operator algebras and non-commutative geometry. The first part, written by M.Rordam, is on Elliott's classification program for nuclear C*-algebras. The emphasis is on the work of Kirchberg and the spectacular results by Kirchberg and Phillips giving a nearly complete classification, in terms of K-theoretic invariants, in the purely infinite case. This part of the program is described with almost full proofs beginning with Kirchberg's tensor product theorems and Kirchberg's embedding theorem for exact C*-algebras. The classification of finite simple C*-algebras starting with AF-algebras, and continuing with AT- and AH-algebras is covered, but mostly without proofs. The second part, written by E.Stormer, is a survey of the theory of of noncommutative entropy of automorphisms of C*-algebras and von Neumann algebras from its initiation by Connes and Stormer in 1975 till 2001.
This is the second of three volumes that, together, give an exposition of the mathematics of grades 9-12 that is simultaneously mathematically correct and grade-level appropriate. The volumes are consistent with CCSSM (Common Core State Standards for Mathematics) and aim at presenting the mathematics of K-12 as a totally transparent subject. The first part of this volume is devoted to the study of standard algebra topics: quadratic functions, graphs of equations of degree 2 in two variables, polynomials, exponentials and logarithms, complex numbers and the fundamental theorem of algebra, and the binomial theorem. Having translations and the concept of similarity at our disposal enables us to clarify the study of quadratic functions by concentrating on their graphs, the same way the study of linear functions is greatly clarified by knowing that their graphs are lines. We also introduce the concept of formal algebra in the study of polynomials with complex coefficients. The last three chapters in this volume complete the systematic exposition of high school geometry that is consistent with CCSSM. These chapters treat the geometry of the triangle and the circle, ruler and compass constructions, and a general discussion of axiomatic systems, including non-Euclidean geometry and the celebrated work of Hilbert on the foundations. This book should be useful for current and future teachers of K-12 mathematics, as well as for some high school students and for education professionals.
1. This book has a market across criminology and criminal justice, sociology and law. 2. While there is a healthy market for books on the death penalty, there is a gap for a book that offers a rigorous theoretical approach to making sense of the data. 3. While many studies have focused specifically on racial bias, this book considers a range of social characteristics and their impact on sentencing, including class, moral reputation and organizational status.
This volume comprises papers presented at the Third Isle of Thorns Conference on Finite Geometries and Designs. The papers explore the structure and associated incidence structures of Galois geometries, and their related automorphism groups. Among the main topics covered are generalized quadrangles and n-gons, groups acting on geometries, linear spaces, partial geometries, diagram geometries, non-Desarguesian planes, strongly regular graphs, and designs. This timely collection of articles is expertly presented and will be of interest to research workers and postgraduates in combinatorics, design theory, and finite geometries.
This book introduces multiplicative Frenet curves. We define multiplicative tangent, multiplicative normal, and multiplicative normal plane for a multiplicative Frenet curve. We investigate the local behaviours of a multiplicative parameterized curve around multiplicative biregular points, define multiplicative Bertrand curves and investigate some of their properties. A multiplicative rigid motion is introduced. The book is addressed to instructors and graduate students, and also specialists in geometry, mathematical physics, differential equations, engineering, and specialists in applied sciences. The book is suitable as a textbook for graduate and under-graduate level courses in geometry and analysis. Many examples and problems are included. The author introduces the main conceptions for multiplicative surfaces: multiplicative first fundamental form, the main multiplicative rules for differentiations on multiplicative surfaces, and the main multiplicative regularity conditions for multiplicative surfaces. An investigation of the main classes of multiplicative surfaces and second fundamental forms for multiplicative surfaces is also employed. Multiplicative differential forms and their properties, multiplicative manifolds, multiplicative Einstein manifolds and their properties, are investigated as well. Many unique applications in mathematical physics, classical geometry, economic theory, and theory of time scale calculus are offered.
THEOREM: Rotational symmetries of order greater than six, and also five-fold rotational symmetry, are impossible for a periodic pattern in the plane or in three-dimensional space. The discovery of quasicrystals shattered this fundamental 'law', not by showing it to be logically false but by showing that periodicity was not synonymous with long-range order, if by 'long-range order' we mean whatever order is necessary for a crystal to produce a diffraction pat tern with sharp bright spots. It suggested that we may not know what 'long-range order' means, nor what a 'crystal' is, nor how 'symmetry' should be defined. Since 1984, solid state science has been under going a veritable K uhnian revolution. -M. SENECHAL, Quasicrystals and Geometry Between total order and total disorder He the vast majority of physical structures and processes that we see around us in the natural world. On the whole our mathematics is well developed for describing the totally ordered or totally disordered worlds. But in reality the two are rarely separated and the mathematical tools required to investigate these in-between states in depth are in their infancy."
The De Gruyter Studies in Mathematical Physics are devoted to the publication of monographs and high-level texts in mathematical physics. They cover topics and methods in fields of current interest, with an emphasis on didactical presentation. The series will enable readers to understand, apply and develop further, with sufficient rigor, mathematical methods to given problems in physics. For this reason, works with a few authors are preferred over edited volumes. The works in this series are aimed at advanced students and researchers in mathematical and theoretical physics. They can also serve as secondary reading for lectures and seminars at advanced levels.
This book provides advanced undergraduate physics and mathematics students with an accessible yet detailed understanding of the fundamentals of differential geometry and symmetries in classical physics. Readers, working through the book, will obtain a thorough understanding of symmetry principles and their application in mechanics, field theory, and general relativity, and in addition acquire the necessary calculational skills to tackle more sophisticated questions in theoretical physics. Most of the topics covered in this book have previously only been scattered across many different sources of literature, therefore this is the first book to coherently present this treatment of topics in one comprehensive volume. Key features: Contains a modern, streamlined presentation of classical topics, which are normally taught separately Includes several advanced topics, such as the Belinfante energy-momentum tensor, the Weyl-Schouten theorem, the derivation of Noether currents for diffeomorphisms, and the definition of conserved integrals in general relativity Focuses on the clear presentation of the mathematical notions and calculational technique
Fixed Point Results in W-Distance Spaces is a self-contained and comprehensive reference for advanced fixed-point theory and can serve as a useful guide for related research. The book can be used as a teaching resource for advanced courses on fixed-point theory, which is a modern and important field in mathematics. It would be especially valuable for graduate and postgraduate courses and seminars. Features Written in a concise and fluent style, covers a broad range of topics and includes related topics from research. Suitable for researchers and postgraduates. Contains brand new results not published elsewhere.
This unique textbook combines traditional geometry presents a contemporary approach that is grounded in real-world applications. It balances the deductive approach with discovery learning, introduces axiomatic, Euclidean and non-Euclidean, and transformational geometry. The text integrates applications and examples throughout. The Third Edition offers many updates, including expaning on historical notes, Geometry and Its Applications is a significant text for any college or university that focuses on geometry's usefulness in other disciplines. It is especially appropriate for engineering and science majors, as well as future mathematics teachers. The Third Edition streamlines the treatment from the previous two editions Treatment of axiomatic geometry has been expanded Nearly 300 applications from all fields are included An emphasis on computer science-related applications appeals to student interest Many new excercises keep the presentation fresh
This book covers topics of Informational Geometry, a field which deals with the differential geometric study of the manifold probability density functions. This is a field that is increasingly attracting the interest of researchers from many different areas of science, including mathematics, statistics, geometry, computer science, signal processing, physics and neuroscience. It is the authors' hope that the present book will be a valuable reference for researchers and graduate students in one of the aforementioned fields. This textbook is a unified presentation of differential geometry and probability theory, and constitutes a text for a course directed at graduate or advanced undergraduate students interested in applications of differential geometry in probability and statistics. The book contains over 100 proposed exercises meant to help students deepen their understanding, and it is accompanied by software that is able to provide numerical computations of several information geometric objects. The reader will understand a flourishing field of mathematics in which very few books have been written so far.
Understanding maths has never been easier. Combining bold, elegant graphics with easy-to-understand text, Simply Maths is the perfect introduction to the subject for those who are short of time but hungry for knowledge. Covering more than 90 key mathematical concepts from prime numbers and fractions to quadratic equations and probability experiments, each pared-back, single-page entry explains the concept more clearly than ever before. Organized by major themes - number theory and systems; calculations; geometry; algebra; graphs; ratio and proportion; measurement; probability and statistics; and calculus - entries explain the essentials of each key mathematical theory with simple clarity and for ease of understanding. Whether you are studying maths at school or college, or simply want a jargon-free overview of the subject, this indispensable guide is packed with everything you need to understand the basics quickly and easily.
Professor Atiyah is one of the greatest living mathematicians and is well known throughout the mathematical world. He is a recipient of the Fields Medal, the mathematical equivalent of the Nobel Prize, and is still at the peak of his career. His huge number of published papers, focusing on the areas of algebraic geometry and topology, have here been collected into six volumes, divided thematically for easy reference by individuals interested in a particular subject. Volumes III and IV cover papers written in 1963-84 and are the result of a long collaboration with I. M. Singer on the Index Theory of elliptic operators.
Professor Atiyah is one of the greatest living mathematicians and is well known throughout the mathematical world. He is a recipient of the Fields Medal, the mathematical equivalent of the Nobel Prize, and is still at the peak of his career. His huge number of published papers, focusing on the areas of algebraic geometry and topology, have here been collected into six volumes, divided thematically for easy reference by individuals interested in a particular subject. Volumes III and IV cover papers written in 1963-84 and are the result of a long collaboration with I. M. Singer on the Index Theory of elliptic operators.
1) Provides a visual approach to the subject of robotics, aiding students and professionals in understanding the topic 2) Demonstrates how to solve problems using simple code, making it accessible to those with limited coding experience 3) Uses real world examples in order to demonstrate concepts in a practical manner 4) Provides a complete set of examples for typical robot manipulator architectures, including Puma, Bending-Backwards, Gantry, Scara, Collaborative and Redundant 5) Uses 6D vectors in order to reduce the computational volume of implementations
Professor Atiyah is one of the greatest living mathematicians and is well known throughout the mathematical world. He is a recipient of the Fields Medal, the mathematical equivalent of the Nobel Prize, and is still at the peak of his career. His huge number of published papers, focusing on the areas of algebraic geometry and topology, have here been collected into six volumes, divided thematically for easy reference by individuals interested in a particular subject. From 1977 onwards his interest moved in the direction of gauge theories and the interaction between geometry and physics.
One of the greatest mathematicians in the world, Michael Atiyah has earned numerous honors, including a Fields Medal, the mathematical equivalent of the Nobel Prize. While the focus of his work has been in the areas of algebraic geometry and topology, he has also participated in research with theoretical physicists. For the first time, these volumes bring together Atiyah's collected papers--both monographs and collaborative works-- including those dealing with mathematical education and current topics of research such as K-theory and gauge theory. The volumes are organized thematically. They will be of great interest to research mathematicians, theoretical physicists, and graduate students in these areas.
Professor Atiyah is one of the greatest living mathematicians and is well known throughout the mathematical world. He is a recipient of the Fields Medal, the mathematical equivalent of the Nobel Prize, and is still at the peak of his career. His huge number of published papers, focusing on the areas of algebraic geometry and topology, have here been collected into six volumes, divided thematically for easy reference by individuals interested in a particular subject. These papers, covering the years 1959-62, consist mainly of Michael Atiyah's joint papers with F. Hirzebruch on K-Theory.
A study of topology and geometry, beginning with a comprehensible account of the extraordinary and rather mysterious impact of mathematical physics, and especially gauge theory, on the study of the geometry and topology of manifolds. The focus of the book is the Yang-Mills-Higgs field and some considerable effort is expended to make clear its origin and significance in physics. Much of the mathematics developed here to study these fields is standard, but the treatment always keeps one eye on the physics and sacrifices generality in favor of clarity. The author brings readers up the level of physics and mathematics needed to conclude with a brief discussion of the Seiberg-Witten invariants. A large number of exercises are included to encourage active participation on the part of the reader. |
You may like...
I. C. S. Reference Library: Types of…
International Correspondence Schools
Paperback
R744
Discovery Miles 7 440
|