![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Geometry > General
This book investigates the high degree of symmetry that lies hidden in integrable systems. To that end, differential equations arising from classical mechanics, such as the KdV equation and the KP equations, are used here by the authors to introduce the notion of an infinite dimensional transformation group acting on spaces of integrable systems. Chapters discuss the work of M. Sato on the algebraic structure of completely integrable systems, together with developments of these ideas in the work of M. Kashiwara. The text should be accessible to anyone with a knowledge of differential and integral calculus and elementary complex analysis, and it will be a valuable resource to both novice and expert alike.
This marvelous book of pictures illustrates the fundamental concepts of geometric topology in a way that is very friendly to the reader. The first chapter discusses the meaning of surface and space and gives the classification of orientable surfaces. In the second chapter we are introduced to the Moebius band and surfaces that can be constructed from this non-orientable piece of fabric. In chapter 3, we see how curves can fit in surfaces and how surfaces can fit into spaces with these curves on their boundary. Basic applications to knot theory are discussed and four-dimensional space is introduced.In Chapter 4 we learn about some 3-dimensional spaces and surfaces that sit inside them. These surfaces help us imagine the structures of the larger space.Chapter 5 is completely new! It contains recent results of Cromwell, Izumiya and Marar. One of these results is a formula relating the rank of a surface to the number of triple points. The other major result is a collection of examples of surfaces in 3-space that have one triple point and 6 branch points. These are beautiful generalizations of the Steiner Roman surface.Chapter 6 reviews the movie technique for examining surfaces in 4-dimensional space. Various movies of the Klein bottle are presented, and the Carter-Saito movie move theorem is explained. The author shows us how to turn the 2-sphere inside out by means of these movie moves and this illustration alone is well worth the price of the book!In the last chapter higher dimensional spaces are examined from an elementary point of view.This is a guide book to a wide variety of topics. It will be of value to anyone who wants to understand the subject by way of examples. Undergraduates, beginning graduate students, and non-professionals will profit from reading the book and from just looking at the pictures.
A Kleinian group is a discrete subgroup of the isometry group of hyperbolic 3-space, which is also regarded as a subgroup of Moebius transformations in the complex plane. The present book is a comprehensive guide to theories of Kleinian groups from the viewpoints of hyperbolic geometry and complex analysis. After 1960, Ahlfors and Bers were the leading researchers of Kleinian groups and helped it to become an active area of complex analysis as a branch of Teichmuller theory. Later, Thurston brought a revolution to this area with his profound investigation of hyperbolic manifolds, and at the same time complex dynamical approach was strongly developed by Sullivan. This book provides fundamental results and important theorems which are needed for access to the frontiers of the theory from a modern viewpoint.
Geometry processing, or mesh processing, is a fast-growing area of research that uses concepts from applied mathematics, computer science, and engineering to design efficient algorithms for the acquisition, reconstruction, analysis, manipulation, simulation, and transmission of complex 3D models. Applications of geometry processing algorithms already cover a wide range of areas from multimedia, entertainment, and classical computer-aided design, to biomedical computing, reverse engineering, and scientific computing. Over the last several years, triangle meshes have become increasingly popular, as irregular triangle meshes have developed into a valuable alternative to traditional spline surfaces. This book discusses the whole geometry processing pipeline based on triangle meshes. The pipeline starts with data input, for example, a model acquired by 3D scanning techniques. This data can then go through processes of error removal, mesh creation, smoothing, conversion, morphing, and more. The authors detail techniques for those processes using triangle meshes. A supplemental website contains downloads and additional information.
Combinatorics of Spreads and Parallelisms covers all known finite and infinite parallelisms as well as the planes comprising them. It also presents a complete analysis of general spreads and partitions of vector spaces that provide groups enabling the construction of subgeometry partitions of projective spaces. The book describes general partitions of finite and infinite vector spaces, including Sperner spaces, focal-spreads, and their associated geometries. Since retraction groups provide quasi-subgeometry and subgeometry partitions of projective spaces, the author thoroughly discusses subgeometry partitions and their construction methods. He also features focal-spreads as partitions of vector spaces by subspaces. In addition to presenting many new examples of finite and infinite parallelisms, the book shows that doubly transitive or transitive t-parallelisms cannot exist unless the parallelism is a line parallelism. Along with the author's other three books (Subplane Covered Nets, Foundations of Translation Planes, Handbook of Finite Translation Planes), this text forms a solid, comprehensive account of the complete theory of the geometries that are connected with translation planes in intricate ways. It explores how to construct interesting parallelisms and how general spreads of vector spaces are used to study and construct subgeometry partitions of projective spaces.
One century after Hilbert constructed the first example of a non-classical affine plane, this book aims to summarize all the major results about geometries on surfaces. Acting both as a reference and a monograph, the authors have included detailed sections on what is known as well as outlining problems that remain to be solved. There are sections on classical geometries, methods for constructing non-classical geometries and classifications and characterizations of geometries. This work is related to a host of other fields including approximation, convexity, differential geometry topology and many more. This book will appeal to students, researchers and lecturers working in geometry or any one of the many associated areas outlined above.
This volume focuses on the interactions between mathematics, physics, biology and neuroscience by exploring new geometrical and topological modeling in these fields. Among the highlights are the central roles played by multilevel and scale-change approaches in these disciplines. The integration of mathematics with physics, molecular and cell biology, and the neurosciences, will constitute the new frontier and challenge for 21st century science, where breakthroughs are more likely to span across traditional disciplines.
"Knot theory is a fascinating mathematical subject, with multiple links to theoretical physics. This enyclopedia is filled with valuable information on a rich and fascinating subject." - Ed Witten, Recipient of the Fields Medal "I spent a pleasant afternoon perusing the Encyclopedia of Knot Theory. It's a comprehensive compilation of clear introductions to both classical and very modern developments in the field. It will be a terrific resource for the accomplished researcher, and will also be an excellent way to lure students, both graduate and undergraduate, into the field." - Abigail Thompson, Distinguished Professor of Mathematics at University of California, Davis Knot theory has proven to be a fascinating area of mathematical research, dating back about 150 years. Encyclopedia of Knot Theory provides short, interconnected articles on a variety of active areas in knot theory, and includes beautiful pictures, deep mathematical connections, and critical applications. Many of the articles in this book are accessible to undergraduates who are working on research or taking an advanced undergraduate course in knot theory. More advanced articles will be useful to graduate students working on a related thesis topic, to researchers in another area of topology who are interested in current results in knot theory, and to scientists who study the topology and geometry of biopolymers. Features Provides material that is useful and accessible to undergraduates, postgraduates, and full-time researchers Topics discussed provide an excellent catalyst for students to explore meaningful research and gain confidence and commitment to pursuing advanced degrees Edited and contributed by top researchers in the field of knot theory
This book unravels the mystery of Geometry in Origami with a unique approach: 64 Polyhedra designs, each made from a single square sheet of paper, no cuts, no glue; each polyhedron the largest possible from the starting size of square and each having an ingenious locking mechanism to hold its shape. The author covers the five Platonic solids (cube, tetrahedron, octahedron, icosahedron and dodecahedron). There are ample variations with different color patterns and sunken sides. Dipyramids and Dimpled Dipyramids, unexplored before this in Origami, are also covered. There are a total of 64 models in the book. All the designs have an interesting look and a pleasing folding sequence and are based on unique mathematical equations.
1. This book has a market across criminology and criminal justice, sociology and law. 2. While there is a healthy market for books on the death penalty, there is a gap for a book that offers a rigorous theoretical approach to making sense of the data. 3. While many studies have focused specifically on racial bias, this book considers a range of social characteristics and their impact on sentencing, including class, moral reputation and organizational status.
Convex geometry is at once simple and amazingly rich. While the classical results go back many decades, during that previous to this book's publication in 1999, the integral geometry of convex bodies had undergone a dramatic revitalization, brought about by the introduction of methods, results and, most importantly, new viewpoints, from probability theory, harmonic analysis and the geometry of finite-dimensional normed spaces. This book is a collection of research and expository articles on convex geometry and probability, suitable for researchers and graduate students in several branches of mathematics coming under the broad heading of 'Geometric Functional Analysis'. It continues the Israel GAFA Seminar series, which is widely recognized as the most useful research source in the area. The collection reflects the work done at the program in Convex Geometry and Geometric Analysis that took place at MSRI in 1996.
This classic text serves as a tool for self-study; it is also used as a basic text for undergraduate courses in differential geometry. The author's ability to extract the essential elements of the theory in a lucid and concise fashion allows the student easy access to the material and enables the instructor to add emphasis and cover special topics. The extraordinary wealth of examples within the exercises and the new material, ranging from isoperimetric problems to comments on Einstein's original paper on relativity theory, enhance this new edition.
Many of the modern variational problems in topology arise in different but overlapping fields of scientific study: mechanics, physics and mathematics. In this work, Professor Fomenko offers a concise and clean explanation of some of these problems (both solved and unsolved), using current methods and analytical topology. The author's skillful exposition gives an unusual motivation to the theory expounded, and his work is recommended reading for specialists and nonspecialists alike, involved in the fields of physics and mathematics at both undergraduate and graduate levels.
A Sampler of Useful Computational Tools for Applied Geometry, Computer Graphics, and Image Processing shows how to use a collection of mathematical techniques to solve important problems in applied mathematics and computer science areas. The book discusses fundamental tools in analytical geometry and linear algebra. It covers a wide range of topics, from matrix decomposition to curvature analysis and principal component analysis to dimensionality reduction. Written by a team of highly respected professors, the book can be used in a one-semester, intermediate-level course in computer science. It takes a practical problem-solving approach, avoiding detailed proofs and analysis. Suitable for readers without a deep academic background in mathematics, the text explains how to solve non-trivial geometric problems. It quickly gets readers up to speed on a variety of tools employed in visual computing and applied geometry.
This new edition of Six Simple Twists: The Pleat Pattern Approach to Origami Tessellation Design introduces an innovative pleat pattern technique for origami designs that is easily accessible to anyone who enjoys the geometry of paper. The book begins with six basic forms meant to ease the reader into the style, and then systematically scaffolds the instructions to build a strong understanding of the techniques, leading to instructions on a limitless number of patterns. It then describes a process of designing additional building blocks. At the end, what emerges is a fascinating artform that will enrich folders for many years. Unlike standard, project-based origami books, Six Simple Twists focuses on how to design, rather than construct. In this thoroughly updated second edition, the book explores new techniques and example tessellations, with full-page images, and mathematical analysis of the patterns. A reader will, through practice, gain the ability to create still more complex and fascinating designs. Key Features Introduces the reader to origami tessellations and demonstrates their place in the origami community New layout and instructional approach restructure the book from the ground up Addresses common tessellation questions, such as what types of paper are best to use, and how this artform rose in popularity Teaches the reader how to grid a sheet of paper and the importance of the pre-creases Gives the reader the ability to create and understand tessellations through scaffolded instruction Includes exercises to test understanding Introduces a new notation system for precisely describing pleat intersections Analyzes pleat intersections mathematically using geometrically-focused models, including information about Brocard points
Since the 1950s control theory has established itself as a major mathematical discipline, particularly suitable for application in a number of research fields, including advanced engineering design, economics and the medical sciences. However, since its emergence, there has been a need to rethink and extend fields such as calculus of variations, differential geometry and nonsmooth analysis, which are closely tied to research on applications. Today control theory is a rich source of basic abstract problems arising from applications, and provides an important frame of reference for investigating purely mathematical issues. In many fields of mathematics, the huge and growing scope of activity has been accompanied by fragmentation into a multitude of narrow specialties. However, outstanding advances are often the result of the quest for unifying themes and a synthesis of different approaches. Control theory and its applications are no exception. Here, the interaction between analysis and geometry has played a crucial role in the evolution of the field. This book collects some recent results, highlighting geometrical and analytical aspects and the possible connections between them. Applications provide the background, in the classical spirit of mutual interplay between abstract theory and problem-solving practice.
This book is a systematic presentation of the solution of one of the fundamental problems of the theory of random dynamical systems - the problem of topological classification and structural stability of linear hyperbolic random dynamical systems. As a relatively new and fast expanding field of research, this theory attracts the attention of researchers from various fields of science. It unites and develops the classical deterministic theory of dynamical systems and probability theory, hence finds many applications in a very wide range of disciplines from physics to biology to engineering, finance and economics. Recent developments call for a systematic presentation of the theory. Mathematicians working in the theory of dynamical systems, stochastic dynamics as well as those interested in applications of mathematical systems with random noise will find this timely book a valuable reference and rich source of modern mathematical methods and results.
This is a collection of surveys on important mathematical ideas, their origin, their evolution and their impact in current research. The authors are mathematicians who are leading experts in their fields. The book is addressed to all mathematicians, from undergraduate students to senior researchers, regardless of the specialty.
The book covers all the fundamental aspects of generating fractals through L-system. Also it provides insight to various researches in this area for generating fractals through L-system approach & estimating dimensions. Also it discusses various applications of L-system fractals.
This book discusses how to design "good" geometric puzzles: two-dimensional dissection puzzles, polyhedral dissections, and burrs. It outlines major categories of geometric puzzles and provides examples, sometimes going into the history and philosophy of those examples. The author presents challenges and thoughtful questions, as well as practical design and woodworking tips to encourage the reader to build his own puzzles and experiment with his own designs. Aesthetics, phychology, and mathematical considerations all factor into the definition of the quality of a puzzle.
A one-stop reference to fractional factorials and related
orthogonal arrays.
A First Course in Chaotic Dynamical Systems: Theory and Experiment, Second Edition The long-anticipated revision of this well-liked textbook offers many new additions. In the twenty-five years since the original version of this book was published, much has happened in dynamical systems. Mandelbrot and Julia sets were barely ten years old when the first edition appeared, and most of the research involving these objects then centered around iterations of quadratic functions. This research has expanded to include all sorts of different types of functions, including higher-degree polynomials, rational maps, exponential and trigonometric functions, and many others. Several new sections in this edition are devoted to these topics. The area of dynamical systems covered in A First Course in Chaotic Dynamical Systems: Theory and Experiment, Second Edition is quite accessible to students and also offers a wide variety of interesting open questions for students at the undergraduate level to pursue. The only prerequisite for students is a one-year calculus course (no differential equations required); students will easily be exposed to many interesting areas of current research. This course can also serve as a bridge between the low-level, often non-rigorous calculus courses, and the more demanding higher-level mathematics courses. Features More extensive coverage of fractals, including objects like the Sierpinski carpet and others that appear as Julia sets in the later sections on complex dynamics, as well as an actual chaos "game." More detailed coverage of complex dynamical systems like the quadratic family and the exponential maps. New sections on other complex dynamical systems like rational maps. A number of new and expanded computer experiments for students to perform. About the Author Robert L. Devaney is currently professor of mathematics at Boston University. He received his PhD from the University of California at Berkeley under the direction of Stephen Smale. He taught at Northwestern University and Tufts University before coming to Boston University in 1980. His main area of research is dynamical systems, primarily complex analytic dynamics, but also including more general ideas about chaotic dynamical systems. Lately, he has become intrigued with the incredibly rich topological aspects of dynamics, including such things as indecomposable continua, Sierpinski curves, and Cantor bouquets.
This second volume in a two-volume set provides a complete self-contained proof of the classification of geometries associated with sporadic simple groups: Petersen and tilde geometries. It contains a study of the representations of the geometries under consideration in GF(2)-vector spaces as well as in some non-Abelian groups. The central part is the classification of the amalgam of maximal parabolics, associated with a flag transitive action on a Petersen or tilde geometry. By way of their systematic treatment of group amalgams, the authors establish a deep and important mathematical result.
This volume is based on lectures given at the highly successful three-week Summer School on Geometry, Topology and Dynamics of Character Varieties held at the National University of Singapore's Institute for Mathematical Sciences in July 2010.Aimed at graduate students in the early stages of research, the edited and refereed articles comprise an excellent introduction to the subject of the program, much of which is otherwise available only in specialized texts. Topics include hyperbolic structures on surfaces and their degenerations, applications of ping-pong lemmas in various contexts, introductions to Lorenzian and complex hyperbolic geometry, and representation varieties of surface groups into PSL(2, ) and other semi-simple Lie groups. This volume will serve as a useful portal to students and researchers in a vibrant and multi-faceted area of mathematics. |
![]() ![]() You may like...
|