![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Geometry > General
The book contains papers from the proceedings of the 3rd International Meeting of Origami Science, Math, and Education, sponsored by OrigamiUSA. They cover topics ranging from the mathematics of origami using polygon constructions and geometric projections, applications, and science of origami, and the use of origami in education.
Based on a conference held in honor of Professor Tarow Indow, this
volume is organized into three major topics concerning the use of
geometry in perception:
A traditional approach to developing multivariate statistical
theory is algebraic. Sets of observations are represented by
matrices, linear combinations are formed from these matrices by
multiplying them by coefficient matrices, and useful statistics are
found by imposing various criteria of optimization on these
combinations. Matrix algebra is the vehicle for these calculations.
A second approach is computational. Since many users find that they
do not need to know the mathematical basis of the techniques as
long as they have a way to transform data into results, the
computation can be done by a package of computer programs that
somebody else has written. An approach from this perspective
emphasizes how the computer packages are used, and is usually
coupled with rules that allow one to extract the most important
numbers from the output and interpret them. Useful as both
approaches are--particularly when combined--they can overlook an
important aspect of multivariate analysis. To apply it correctly,
one needs a way to conceptualize the multivariate relationships
that exist among variables.
This book will allow you to travel through time and space. To facilitate your journey, the editor has scoured the four corners of the earth in a quest for unusual people and their fascinating patterns. From Mozambique, to Asia, to many European countries, the contributors to The Pattern Book include world-famous cancer researchers, little-known artists and eclectirc computer programmers. Some of the patterns are ultramodern, while others are centuries old. Many of the patterns are drawn from the universe of mathematics. Computer recipes are scattered throughout.Although the emphasis is on computer-generated patterns, the book is informal and the intended audience spans several fields. The emphasis is on the fun that the true pattern lover finds in doing, rather than in reading about the doing! The book is organized into three main parts: Representing Nature (for those patterns which describe or show real physical phenomena, e.g., visualizations of protein motion, sea lilies, etc.), Mathematics and Symmetry (for those patterns which describe or show mathematical behavior, e.g. fractals), and Human Art (for those patterns which are artistic works of humans and made without the aid of a computer, e.g. Moslem tiling patterns.)
The Handbook and Atlas of Curves describes available analytic and
visual properties of plane and spatial curves. Information is
presented in a unique format, with one half of the book detailing
investigation tools and the other devoted to the Atlas of Plane
Curves. Main definitions, formulas, and facts from curve theory
(plane and spatial) are discussed in depth. They comprise the
necessary apparatus for examining curves.
This marvelous book of pictures illustrates the fundamental concepts of geometric topology in a way that is very friendly to the reader. The first chapter discusses the meaning of surface and space and gives the classification of orientable surfaces. In the second chapter we are introduced to the Moebius band and surfaces that can be constructed from this non-orientable piece of fabric. In chapter 3, we see how curves can fit in surfaces and how surfaces can fit into spaces with these curves on their boundary. Basic applications to knot theory are discussed and four-dimensional space is introduced.In Chapter 4 we learn about some 3-dimensional spaces and surfaces that sit inside them. These surfaces help us imagine the structures of the larger space.Chapter 5 is completely new! It contains recent results of Cromwell, Izumiya and Marar. One of these results is a formula relating the rank of a surface to the number of triple points. The other major result is a collection of examples of surfaces in 3-space that have one triple point and 6 branch points. These are beautiful generalizations of the Steiner Roman surface.Chapter 6 reviews the movie technique for examining surfaces in 4-dimensional space. Various movies of the Klein bottle are presented, and the Carter-Saito movie move theorem is explained. The author shows us how to turn the 2-sphere inside out by means of these movie moves and this illustration alone is well worth the price of the book!In the last chapter higher dimensional spaces are examined from an elementary point of view.This is a guide book to a wide variety of topics. It will be of value to anyone who wants to understand the subject by way of examples. Undergraduates, beginning graduate students, and non-professionals will profit from reading the book and from just looking at the pictures.
This volume contains the proceedings of the special session on Modern Methods in Continuum Theory presented at the 100th Annual Joint Mathematics Meetings held in Cincinnati, Ohio. It also features the Houston Problem Book which includes a recently updated set of 200 problems accumulated over several years at the University of Houston.;These proceedings and problems are aimed at pure and applied mathematicians, topologists, geometers, physicists and graduate-level students in these disciplines.
Based on the Working Conference on Boundary Control and Boundary Variation held in Sophia-Antipolis, France, this work provides important examinations of shape optimization and boundary control of hyperbolic systems, including free boundary problems and stabilization. It offers a new approach to large and nonlinear variation of the boundary using global Eulerian co-ordinates and intrinsic geometry.
The aim of this work is to apply variational methods and critical point theory on infinite dimensional manifolds, to some problems in Lorentzian Geometry which have a variational nature, such as existence and multiplicity results on geodesics and Relations between such geodesics and the topology of the manifold (in the spirit of Morse Theory). In particular Ljusternik-Schnirelmann critical point theory and Morse theory are exploited. Moreover, the results for general Lorentzian manifolds should be applied to physically relevant space-times of General Relativity, like Schwarzschild and Kerr space-times.
This book provides theoretical concepts and applications of fractals and multifractals to a broad range of audiences from various scientific communities, such as petroleum, chemical, civil and environmental engineering, atmospheric research, and hydrology. In the first chapter, we introduce fractals and multifractals from physics and math viewpoints. We then discuss theory and practical applications in detail. In what follows, in chapter 2, fragmentation process is modeled using fractals. Fragmentation is the breaking of aggregates into smaller pieces or fragments, a typical phenomenon in nature. In chapter 3, the advantages and disadvantages of two- and three-phase fractal models are discussed in detail. These two kinds of approach have been widely applied in the literature to model different characteristics of natural phenomena. In chapter 4, two- and three-phase fractal techniques are used to develop capillary pressure curve models, which characterize pore-size distribution of porous media. Percolation theory provides a theoretical framework to model flow and transport in disordered networks and systems. Therefore, following chapter 4, in chapter 5 the fractal basis of percolation theory and its applications in surface and subsurface hydrology are discussed. In chapter 6, fracture networks are shown to be modeled using fractal approaches. Chapter 7 provides different applications of fractals and multifractals to petrophysics and relevant area in petroleum engineering. In chapter 8, we introduce the practical advantages of fractals and multifractals in geostatistics at large scales, which have broad applications in stochastic hydrology and hydrogeology. Multifractals have been also widely applied to model atmospheric characteristics, such as precipitation, temperature, and cloud shape. In chapter 9, these kinds of properties are addressed using multifractals. At watershed scales, river networks have been shown to follow fractal behavior. Therefore, the applications of fractals are addressed in chapter 10. Time series analysis has been under investigations for several decades in physics, hydrology, atmospheric research, civil engineering, and water resources. In chapter 11, we therefore, provide fractal, multifractal, multifractal detrended fluctuation analyses, which can be used to study temporal characterization of a phenomenon, such as flow discharge at a specific location of a river. Chapter 12 addresses signals and again time series using a novel fractal Fourier analysis. In chapter 13, we discuss constructal theory, which has a perspective opposite to fractal theories, and is based on optimizationof diffusive exchange. In the case of river drainages, for example, the constructal approach begins at the divide and generates headwater streams first, rather than starting from the fundamental drainage pattern.
... a major contribution to the world of science and of particular value to the documention of the culture of Islam. N Gedal ... a masterly account of the way in which art and science are combined into aesthetic beauty by the Islamic geometric designs and motifs which decorate much of the Eastern World. M Evans ... This book will allow readers to travel through time and space, from ancient ornaments to the most modern computer graphics patterns. C. Pickover Ever since the discovery of the existence of seventeen space groups in two dimensions by Fedorov in 1891, it has been speculated that all seventeen could be found in Islamic art. But it is in this book that this remarkable fact is for the first time detailed and analysed, with beautiful illustrations. Rarely is there such a thought-provoking blend of esthetics and geometry with abstraction. C N Yang Geometrical form. Here, mathematics combines with art and exhibits clearly its aesthetic appeal Islamic patterns provide a marvellous illustration of symmetry and Drs. Abas and Salman perform a useful service by taking this as their theme and blending it with ideas on computer graphics. Foreword by Michael Atiyah Abas and Salman have assembled a fascinating collection that combines art, history, culture, science, mathematics and philosophy. Their examples range from a 12th-century minaret in Uzbekistan via the Alhambra in Granada to modern computer graphics of Koranic calligraphy on dodecahedrons and tori. They conclude by speculating on the prospect of creating Islamic patterns in virtual reality, where 'a seeker after unity in science and art would be able to submerge himself or herself in exquisite Alhambras of the mind'.Judging by the evidence presented here, it would be an unforgettable experience. New Scientist, (UK)
This book recounts the connections between multidimensional hypergeometric functions and representation theory. In 1984, physicists Knizhnik and Zamolodchikov discovered a fundamental differential equation describing correlation functions in the conformal field theory. The equation is defined in terms of Lie algebra. Kohno and Drinfeld found that the monodromy of the differential equation is described in terms of the quantum group associated with Lie algebra. It turns out that this phenomenon is the tip of the iceberg. The Knizhnik-Zamolodchikov differential equation is solved in multidimensional hypergeometric functions, and the hypergeometric functions yield the connection between the representation theories of Lie algebras and quantum groups. The topics presented in this book are not adequately covered in periodicals.
The articles in this volume are invited papers from the Marcus Wallenberg symposiumand focus on research topicsthat bridge the gapbetweenanalysis, geometry, and topology. The encounters between these three fieldsare widespread and often provide impetus for major breakthroughs in applications.Topics include new developments in low dimensional topology related to invariants of links and three and four manifolds; Perelman's spectacular proof of the Poincare conjecture; and the recent advances made in algebraic, complex, symplectic, and tropical geometry."
Ten years after publication of the popular first edition of this volume, the index theorem continues to stand as a central result of modern mathematics-one of the most important foci for the interaction of topology, geometry, and analysis. Retaining its concise presentation but offering streamlined analyses and expanded coverage of important examples and applications, Elliptic Operators, Topology, and Asymptotic Methods, Second Edition introduces the ideas surrounding the heat equation proof of the Atiyah-Singer index theorem. The author builds towards proof of the Lefschetz formula and the full index theorem with four chapters of geometry, five chapters of analysis, and four chapters of topology. The topics addressed include Hodge theory, Weyl's theorem on the distribution of the eigenvalues of the Laplacian, the asymptotic expansion for the heat kernel, and the index theorem for Dirac-type operators using Getzler's direct method. As a "dessert," the final two chapters offer discussion of Witten's analytic approach to the Morse inequalities and the L2-index theorem of Atiyah for Galois coverings. The text assumes some background in differential geometry and functional analysis. With the partial differential equation theory developed within the text and the exercises in each chapter, Elliptic Operators, Topology, and Asymptotic Methods becomes the ideal vehicle for self-study or coursework. Mathematicians, researchers, and physicists working with index theory or supersymmetry will find it a concise but wide-ranging introduction to this important and intriguing field.
Multifractal theory was introduced by theoretical physicists in 1986. Since then, multifractals have increasingly been studied by mathematicians. This new work presents the latest research on random results on random multifractals and the physical thermodynamical interpretation of these results. As the amount of work in this area increases, Lars Olsen presents a unifying approach to current multifractal theory. Featuring high quality, original research material, this important new book fills a gap in the current literature available, providing a rigorous mathematical treatment of multifractal measures.
This book collects and organizes work in quasi-uniformities and quasi-proximities in order to encourage the use of the structures in general topology. It discusses a radically different viewpoint of topology, leading to new insights into purely topological problems.
Complex Lie groups have often been used as auxiliaries in the study of real Lie groups in areas such as differential geometry and representation theory. To date, however, no book has fully explored and developed their structural aspects. The Structure of Complex Lie Groups addresses this need. Self-contained, it begins with general concepts introduced via an almost complex structure on a real Lie group. It then moves to the theory of representative functions of Lie groups- used as a primary tool in subsequent chapters-and discusses the extension problem of representations that is essential for studying the structure of complex Lie groups. This is followed by a discourse on complex analytic groups that carry the structure of affine algebraic groups compatible with their analytic group structure. The author then uses the results of his earlier discussions to determine the observability of subgroups of complex Lie groups. The differences between complex algebraic groups and complex Lie groups are sometimes subtle and it can be difficult to know which aspects of algebraic group theory apply and which must be modified. The Structure of Complex Lie Groups helps clarify those distinctions. Clearly written and well organized, this unique work presents material not found in other books on Lie groups and serves as an outstanding complement to them.
This volume contains papers presented at the 27th Taniguchi International Symposium, held in Sanda, Japan - focusing on the study of moduli spaces of various geometric objects such as Einstein metrics, conformal structures, and Yang-Mills connections from algebraic and analytic points of view.;Written by over 15 authorities from around the world, Einstein Metrics and Yang-Mills Connections...: discusses current topics in Kaehler geometry, including Kaehler-Einstein metrics, Hermitian-Einstein connections and a new Kaehler version of Kawamata-Viehweg's vanishing theorem; explores algebraic geometric treatments of holomorphic vector bundles on curves and surfaces; addresses nonlinear problems related to Mong-Ampere and Yamabe-type equations as well as nonlinear equations in mathematical physics; and covers interdisciplinary topics such as twistor theory, magnetic monopoles, KP-equations, Einstein and Gibbons-Hawking metrics, and supercommutative algebras of superdifferential operators.;Providing a wide array of original research articles not published elsewhere Einstein Metrics and Yang-Mills Connections is for research mathematicians, including topologists and differential and algebraic geometers, theoretical physicists, and graudate-level students in these disciplines.
This handsome book is aimed towards those with an intermediate skill level, but the origami basics included at the start of the book make it accessible to beginners. A number of beautiful models are offered, ranging from cubes to prisms to dodecahedra. As with the author's two previous books, Origami Inspirations provides step-by-step instructions and color distribution suggestions to create the more than 30 intricate designs presented. The book also includes a chapter featuring designs by origami artists from around the world, and these projects provide a happy complement to the author's own exciting inspirations in the rest of the book.
This is the first detailed account of a new approach to microphysics based on two leading ideas: (i) the explicit dependence of physical laws on scale encountered in quantum physics, is the manifestation of a fundamental principle of nature, scale relativity. This generalizes Einstein's principle of (motion) relativity to scale transformations; (ii) the mathematical achievement of this principle needs the introduction of a nondifferentiable space-time varying with resolution, i.e. characterized by its fractal properties.The author discusses in detail reactualization of the principle of relativity and its application to scale transformations, physical laws which are explicitly scale dependent, and fractals as a new geometric description of space-time.
This book presents original problems from graduate courses in pure and applied mathematics and even small research topics, significant theorems and information on recent results. It is helpful for specialists working in differential equations.
This richly illustrated book provides step-by-step instructions for the construction of over 30 different modular origami structures. The author describes basic folding techniques required to construct themodules that are used as building blocks to construct complex ornamental models. The diagrams are clear, crisp, and easy to follow, and are accompanied by inspiring color photographs. Additional tips encourage the reader to design their own original creations. Advance Praise for Marvelous Modular Origami "A must-have for any modular origami polyhedra enthusiast." -Rona Gurkewitz, co-author of Multimodular Origami Polyhedra "The models are paper folding in its purest form. They range from simple Sonobe to floral and geometrical constructions. All are eye-catching and satisfying to fold, and the finished constructions are pleasing to behold. Also included are short sections on the mathematics behind the shapes and optimum color choices." -David Petty, author of Origami A-B-C "In this colorful book, you'll find wonderful original origami modular creations. Meenakshi's clear instructions and helpful hints will have you zipping through these modules as well as improvising your own." -Rachel Katz, co-author of FUN FOLDS: Language Learning Through Paper Folding "Marvelous Modular Origami is a colorful addition to the literature of mathematical origami." -Florence Temko, author of many origami and other craft books
The investigation of phenomena involving fractals has gone through a spectacular development in the last decade. Many physical, technological and biological processes have been shown to be related to and described by objects with non-integer dimensions. The physics of far-from-equilibrium growth phenomena represents one of the most important fields in which fractal geometry is widely applied. During the last couple of years considerable experimental, numerical and theoretical information has accumulated concerning such processes.This book, written by a well-known expert in the field, summarizes the basic concepts born in the studies of fractal growth and also presents some of the most important new results for more specialized readers. It also contains 15 beautiful color plates demonstrating the richness of the geometry of fractal patterns. Accordingly, it may serve as a textbook on the geometrical aspects of fractal growth and it treats this area in sufficient depth to make it useful as a reference book. No specific mathematical knowledge is required for reading this book which is intended to give a balanced account of the field.
This book unravels the mystery of Geometry in Origami with a unique approach: 64 Polyhedra designs, each made from a single square sheet of paper, no cuts, no glue; each polyhedron the largest possible from the starting size of square and each having an ingenious locking mechanism to hold its shape. The author covers the five Platonic solids (cube, tetrahedron, octahedron, icosahedron and dodecahedron). There are ample variations with different color patterns and sunken sides. Dipyramids and Dimpled Dipyramids, unexplored before this in Origami, are also covered. There are a total of 64 models in the book. All the designs have an interesting look and a pleasing folding sequence and are based on unique mathematical equations.
Interest in the study of geometry is currently enjoying a resurgence-understandably so, as the study of curves was once the playground of some very great mathematicians. However, many of the subject's more exciting aspects require a somewhat advanced mathematics background. For the "fun stuff" to be accessible, we need to offer students an introduction with modest prerequisites, one that stimulates their interest and focuses on problem solving. Integrating parametric, algebraic, and projective curves into a single text, Geometry of Curves offers students a unique approach that provides a mathematical structure for solving problems, not just a catalog of theorems. The author begins with the basics, then takes students on a fascinating journey from conics, higher algebraic and transcendental curves, through the properties of parametric curves, the classification of limacons, envelopes, and finally to projective curves, their relationship to algebraic curves, and their application to asymptotes and boundedness. The uniqueness of this treatment lies in its integration of the different types of curves, its use of analytic methods, and its generous number of examples, exercises, and illustrations. The result is a practical text, almost entirely self-contained, that not only imparts a deeper understanding of the theory, but inspires a heightened appreciation of geometry and interest in more advanced studies. |
You may like...
Rational Geometry - A Text-Book for the…
George Bruce Halsted, David Hilbert
Hardcover
R886
Discovery Miles 8 860
|