![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Geometry > General
This book addresses the new possibilities that are becoming available in games technology through the development of programmable hardware. It is helpful for students of game technology and established game programmers and developers who want to update their expertise to the new technology.
Multifractal theory was introduced by theoretical physicists in 1986. Since then, multifractals have increasingly been studied by mathematicians. This new work presents the latest research on random results on random multifractals and the physical thermodynamical interpretation of these results. As the amount of work in this area increases, Lars Olsen presents a unifying approach to current multifractal theory. Featuring high quality, original research material, this important new book fills a gap in the current literature available, providing a rigorous mathematical treatment of multifractal measures.
Historically, science has strived to reduced complex problems to its simplest components, but more recently, it has recognized the merit of studying complex phenomena in situ. Fractal geometry is one such appealing approach, and this book discusses their application to complex problems in molecular biophysics. It provides a detailed, unified treatment of fractal aspects of protein and structure dynamics, fractal reaction kinetics in biochemical systems, sequence correlations in DNA and proteins, and descriptors of chaos in enzymatic systems. In an area that has been slow to acknowledge the use of fractals, this is an important addition to the literature, offering a glimpse of the wealth of possible applications. application to complex problems
Specialized as it might be, continuum theory is one of the most intriguing areas in mathematics. However, despite being popular journal fare, few books have thoroughly explored this interesting aspect of topology. In Topics on Continua, Sergio Macias, one of the field's leading scholars, presents four of his favorite continuum topics: inverse limits, Jones's set function T, homogenous continua, and n-fold hyperspaces, and in doing so, presents the most complete set of theorems and proofs ever contained in a single topology volume. Many of the results presented have previously appeared only in research papers, and some appear here for the first time. After building the requisite background and exploring the inverse limits of continua, the discussions focus on Professor Jones's set function T and continua for which T is continuous. An introduction to topological groups and group actions lead to a proof of Effros's Theorem, followed by a presentation of two decomposition theorems. The author then offers an in-depth study of n-fold hyperspaces. This includes their general properties, conditions that allow points of n-fold symmetric products to be arcwise accessible from their complement, points that arcwise disconnect the n-fold hyperspaces, the n-fold hyperspaces of graphs, and theorems relating n-fold hyperspaces and cones. The concluding chapter presents a series of open questions on each topic discussed in the book. With more than a decade of teaching experience, Macias is able to put forth exceptionally cogent discussions that not only give beginning mathematicians a strong grounding in continuum theory, but also form an authoritative, single-source guide through some of topology's most captivating facets.
On the basis of Hua Loo-Kengs results on harmonic analysis on classical groups, the author Gong Sheng develops his subject further, drawing togetherresults of his own research as well as works from other Chinese mathematicians. The book is divided into three parts studying harmonic analysis of various groups. Starting with the discussion on unitary groups in part one, the author moves on to rotation groups and unitary symplectic groups in parts 2 and 3. Thus the book provides a survey of harmonic analysis on characteristic manifold of classical domain of first type for real fields, complex fields and quaternion fields. This study will appeal to a wide range of readers from senior mathematics students up to graduate students and to teachers in this field of mathematics.
Natural scientists perceive and classify organisms primarily on the basis of their appearance and structure- their form , defined as that characteristic remaining invariant after translation, rotation, and possibly reflection of the object. The quantitative study of form and form change comprises the field of morphometrics. For morphometrics to succeed, it needs techniques that not only satisfy mathematical and statistical rigor but also attend to the scientific issues.
Read the masters! Experience has shown that this is good advice for the serious mathematics student. This book contains a selection of the classical mathematical papers related to fractal geometry. For the convenience of the student or scholar wishing to learn about fractal geometry, nineteen of these papers are collected here in one place. Twelve of the nineteen have been translated into English from German, French, or Russian. In many branches of science, the work of previous generations is of interest only for historical reasons. This is much less so in mathematics.1 Modern-day mathematicians can learn (and even find good ideas) by reading the best of the papers of bygone years. In preparing this volume, I was surprised by many of the ideas that come up.
Spherical Geometry and Its Applications introduces spherical geometry and its practical applications in a mathematically rigorous form. The text can serve as a course in spherical geometry for mathematics majors. Readers from various academic backgrounds can comprehend various approaches to the subject. The book introduces an axiomatic system for spherical geometry and uses it to prove the main theorems of the subject. It also provides an alternate approach using quaternions. The author illustrates how a traditional axiomatic system for plane geometry can be modified to produce a different geometric world - but a geometric world that is no less real than the geometric world of the plane. Features: A well-rounded introduction to spherical geometry Provides several proofs of some theorems to appeal to larger audiences Presents principal applications: the study of the surface of the earth, the study of stars and planets in the sky, the study of three- and four-dimensional polyhedra, mappings of the sphere, and crystallography Many problems are based on propositions from the ancient text Sphaerica of Menelaus
Comprising a selection of expository and research papers, Harmonic Analysis and Integral Geometry grew from presentations offered at the July 1998 Summer University of Safi, Morocco-an annual, advanced research school and congress. This lively and very successful event drew the attendance of many top researchers, who offered both individual lectures and coordinated courses on specific research topics within this fast growing subject. Harmonic Analysis and Integral Geometry presents important recent advances in the fields of Radon transforms, integral geometry, and harmonic analysis on Lie groups and symmetric spaces. Several articles are devoted to the new theory of Radon transforms on trees. With its related presentations addressing recent developments in various aspects of these intriguing areas of study, Harmonic Analysis and Integral Geometry becomes an important addition not only to the Research Notes in Mathematics series, but to the general mathematics literature.
Non-Uniform Rational B-Splines have become the de facto standard in CAD/CAM and computer graphics. This well-known book covers NURBS from their geometric beginnings to their industrial applications. The second edition incorporates new results and a chapter on Pythagorean curves, a development that shows promise in applications such as NC machining or robot motion control. Includes more than fifty new figures.
Ten years after publication of the popular first edition of this volume, the index theorem continues to stand as a central result of modern mathematics-one of the most important foci for the interaction of topology, geometry, and analysis. Retaining its concise presentation but offering streamlined analyses and expanded coverage of important examples and applications, Elliptic Operators, Topology, and Asymptotic Methods, Second Edition introduces the ideas surrounding the heat equation proof of the Atiyah-Singer index theorem. The author builds towards proof of the Lefschetz formula and the full index theorem with four chapters of geometry, five chapters of analysis, and four chapters of topology. The topics addressed include Hodge theory, Weyl's theorem on the distribution of the eigenvalues of the Laplacian, the asymptotic expansion for the heat kernel, and the index theorem for Dirac-type operators using Getzler's direct method. As a "dessert," the final two chapters offer discussion of Witten's analytic approach to the Morse inequalities and the L2-index theorem of Atiyah for Galois coverings. The text assumes some background in differential geometry and functional analysis. With the partial differential equation theory developed within the text and the exercises in each chapter, Elliptic Operators, Topology, and Asymptotic Methods becomes the ideal vehicle for self-study or coursework. Mathematicians, researchers, and physicists working with index theory or supersymmetry will find it a concise but wide-ranging introduction to this important and intriguing field.
The Geometry Toolbox takes a novel and particularly visual approach to teaching the basic concepts of two- and three-dimensional geometry. It explains the geometry essential for today's computer modeling, computer graphics, and animation systems. While the basic theory is completely covered, the emphasis of the book is not on abstract proofs but rather on examples and algorithms. The Geometry Toolbox is the ideal text for professionals who want to get acquainted with the latest geometric tools. The chapters on basic curves and surfaces form an ideal stepping stone into the world of graphics and modeling. It is also a unique textbook for a modern introduction to linear algebra and matrix theory.
The origami introduced in this book is based on simple techniques. Some were previously known by origami artists and some were discovered by the author. Curved-Folding Origami Design shows a way to explore new area of origami composed of curved folds. Each technique is introduced in a step-by-step fashion, followed by some beautiful artwork examples. A commentary explaining the theory behind the technique is placed at the end of each chapter. Features Explains the techniques for designing curved-folding origami in seven chapters Contains many illustrations and photos (over 140 figures), with simple instructions Contains photos of 24 beautiful origami artworks, as well as their crease patterns Some basic theories behind the techniques are introduced
Originally published in 1934, this informative textbook was written by renowned mathematician and astronomer Duncan Sommerville (1879-1934). Primarily aimed at undergraduates, the book carefully starts from the very beginning of the subject, but also engages with concepts which are considered profoundly more specialist in the field of geometry. Following on from a renewed and flourishing interest in geometry at the time, this textbook was 'written more in accordance with the tendencies of the present', placing a different emphasis on the subject's cornerstone principles and illuminating new developments in the field. Chapters are detailed and contain material often required for examinations; topics covered include the Cartesian coordinate system and tangential equations. Well planned, with a scholarly treatment of the subject and capturing a unified knowledge of geometry, this book will be a considerably valuable source to scholars of mathematics as well as to anyone with an interest in the history of education.
This second edition is based off of the very popular Shaping Space: A Polyhedral Approach, first published twenty years ago. The book is expanded and updated to include new developments, including the revolutions in visualization and model-making that the computer has wrought. Shaping Space is an exuberant, richly-illustrated, interdisciplinary guide to three-dimensional forms, focusing on the suprisingly diverse world of polyhedra. Geometry comes alive in Shaping Space, as a remarkable range of geometric ideas is explored and its centrality in our cultre is persuasively demonstrated. The book is addressed to designers, artists, architects, engineers, chemists, computer scientists, mathematicians, bioscientists, crystallographers, earth scientists, and teachers at all levels-in short, to all scholars and educators interested in, and working with, two- and three-dimensinal structures and patterns.
The abstract homotopy theory is based on the observation that analogues of much of the topological homotopy theory and simple homotopy theory exist in many other categories (e.g. spaces over a fixed base, groupoids, chain complexes, module categories). Studying categorical versions of homotopy structure, such as cylinders and path space constructions, enables not only a unified development of many examples of known homotopy theories but also reveals the inner working of the classical spatial theory. This demonstrates the logical interdependence of properties (in particular the existence of certain Kan fillers in associated cubical sets) and results (Puppe sequences, Vogt's Iemma, Dold's theorem on fibre homotopy equivalences, and homotopy coherence theory).
The book consists of articles based on the XXXVIII Bialowieza Workshop on Geometric Methods in Physics, 2019. The series of Bialowieza workshops, attended by a community of experts at the crossroads of mathematics and physics, is a major annual event in the field. The works in this book, based on presentations given at the workshop, are previously unpublished, at the cutting edge of current research, typically grounded in geometry and analysis, with applications to classical and quantum physics. For the past eight years, the Bialowieza Workshops have been complemented by a School on Geometry and Physics, comprising series of advanced lectures for graduate students and early-career researchers. The extended abstracts of the five lecture series that were given in the eighth school are included. The unique character of the Workshop-and-School series draws on the venue, a famous historical, cultural and environmental site in the Bialowieza forest, a UNESCO World Heritage Centre in the east of Poland: lectures are given in the Nature and Forest Museum and local traditions are interwoven with the scientific activities. The chapter "Toeplitz Extensions in Noncommutative Topology and Mathematical Physics" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Pencils of Cubics and Algebraic Curves in the Real Projective Plane thoroughly examines the combinatorial configurations of n generic points in RP(2). Especially how it is the data describing the mutual position of each point with respect to lines and conics passing through others. The first section in this book answers questions such as, can one count the combinatorial configurations up to the action of the symmetric group? How are they pairwise connected via almost generic configurations? These questions are addressed using rational cubics and pencils of cubics for n = 6 and 7. The book's second section deals with configurations of eight points in the convex position. Both the combinatorial configurations and combinatorial pencils are classified up to the action of the dihedral group D8. Finally, the third section contains plentiful applications and results around Hilbert's sixteenth problem. The author meticulously wrote this book based upon years of research devoted to the topic. The book is particularly useful for researchers and graduate students interested in topology, algebraic geometry and combinatorics. Features: Examines how the shape of pencils depends on the corresponding configurations of points Includes topology of real algebraic curves Contains numerous applications and results around Hilbert's sixteenth problem About the Author: Severine Fiedler-le Touze has published several papers on this topic and has been invited to present at many conferences. She holds a Ph.D. from University Rennes1 and was a post-doc at the Mathematical Sciences Research Institute in Berkeley, California.
This important reference - based on the proceedings of the Special Session on Geometry and Physics held over a six-month period at the University of Aarhus, Denmark, and on articles from the summer school held at Odense University, Denmark - offers new contributions on a host of topics that involve physics, geometry, and topology. Written by more than 50 leading international experts, Geometry and Physics presents the Seiberg-Witten invariants that facilitate the solution of open problems in Donaldson's theory...describes applications of the Seiberg-Witten invariants...analyzes moduli spaces of semi-stable bundles over Riemann surfaces...addresses operator algebras and topology...demonstrates the planar topological aspects of subfactors...examines symplectic geometry and Einstein metrics...discusses novel ways of computing curvature and holonomy for the determinant line bundle...elucidates the new topic of finite type invariants of three-manifolds and relations with nonperturbative quantum invariants...delineates recent work on a purely topological approach to physics-inspired invariants...and much more. Generously illustrated and containing over 800 key bibliographic citations, Geometry and Physics is an indispensable resource for geometers, topologists, mathematical and theoretical physicists, and graduate-level students in these disciplines.
Fractal Geometry in Biological Systems was written by the leading experts in the field of mathematics and the biological sciences together. It is intended to inform researchers in the bringing about the fundamental nature of fractals and their widespread appearance in biological systems. The chapters explain how the presence of fractal geometry can be used in an analytical way to predict outcomes in systems, to generate hypotheses, and to help design experiments. The authors make the mathematics accessible to a wide audience and do not assume prior experience in this area.
Sturm-Liouville problems arise naturally in solving technical problems in engineering, physics, and more recently in biology and the social sciences. These problems lead to eigenvalue problems for ordinary and partial differential equations. Sturm-Liouville Problems: Theory and Numerical Implementation addresses, in a unified way, the key issues that must be faced in science and engineering applications when separation of variables, variational methods, or other considerations lead to Sturm-Liouville eigenvalue problems and boundary value problems.
This book is a collection of exercises for courses in higher algebra, linear algebra and geometry. It is helpful for postgraduate students in checking the solutions and answers to the exercises.
About one and a half decades ago, Feigenbaum, independently of Coullet and Tresser, observed that bifurcations, from simple dynamics to complicated ones, in a family of folding maps like quadratic polynomials follow an universal rule. This observation opened a new way to understanding transition from nonchaotic systems to chaotic or turbulent system in fluid dynamics and many other areas. The renormalization was used to explain this observed universality. This book is intended to bring the reader to the frontier of this active research area which is concerned with renormalization and rigidity in one dimensional dynamics. Most recent results and techniques developed by Sullivan and others (including the authors) in the past five years for an understanding of this universality as well as the most basic and important techniques in the study of one dimensional dynamics also included here.
This book will allow you to travel through time and space. To facilitate your journey, the editor has scoured the four corners of the earth in a quest for unusual people and their fascinating patterns. From Mozambique, to Asia, to many European countries, the contributors to The Pattern Book include world-famous cancer researchers, little-known artists and eclectirc computer programmers. Some of the patterns are ultramodern, while others are centuries old. Many of the patterns are drawn from the universe of mathematics. Computer recipes are scattered throughout.Although the emphasis is on computer-generated patterns, the book is informal and the intended audience spans several fields. The emphasis is on the fun that the true pattern lover finds in doing, rather than in reading about the doing! The book is organized into three main parts: Representing Nature (for those patterns which describe or show real physical phenomena, e.g., visualizations of protein motion, sea lilies, etc.), Mathematics and Symmetry (for those patterns which describe or show mathematical behavior, e.g. fractals), and Human Art (for those patterns which are artistic works of humans and made without the aid of a computer, e.g. Moslem tiling patterns.) |
You may like...
I. C. S. Reference Library: Types of…
International Correspondence Schools
Paperback
R744
Discovery Miles 7 440
A Collection of Cambridge Mathematical…
John Martin Frederick Wright
Paperback
R534
Discovery Miles 5 340
|