![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Geometry > General
A.D. Alexandrov is considered by many to be the father of intrinsic geometry, second only to Gauss in surface theory. That appraisal stems primarily from this masterpiece--now available in its entirely for the first time since its 1948 publication in Russian. Alexandrov's treatise begins with an outline of the basic concepts, definitions, and results relevant to intrinsic geometry. It reviews the general theory, then presents the requisite general theorems on rectifiable curves and curves of minimum length. Proof of some of the general properties of the intrinsic metric of convex surfaces follows. The study then splits into two almost independent lines: further exploration of the intrinsic geometry of convex surfaces and proof of the existence of a surface with a given metric. The final chapter reviews the generalization of the whole theory to convex surfaces in the Lobachevskii space and in the spherical space, concluding with an outline of the theory of nonconvex surfaces. Alexandrov's work was both original and extremely influential. This book gave rise to studying surfaces "in the large," rejecting the limitations of smoothness, and reviving the style of Euclid. Progress in geometry in recent decades correlates with the resurrection of the synthetic methods of geometry and brings the ideas of Alexandrov once again into focus. This text is a classic that remains unsurpassed in its clarity and scope.
Based on the subjects from the Clay Mathematics Institute/Mathematical Sciences Research Institute Workshop titled 'Recent Progress in Dynamics' in September and October 2004, this volume contains surveys and research articles by leading experts in several areas of dynamical systems that have experienced substantial progress. One of the major surveys is on symplectic geometry, which is closely related to classical mechanics and an exciting addition to modern geometry. The survey on local rigidity of group actions gives a broad and up-to-date account of another flourishing subject. Other papers cover hyperbolic, parabolic, and symbolic dynamics as well as ergodic theory. Students and researchers in dynamical systems, geometry, and related areas will find this book fascinating. The book also includes a fifty-page commented problem list that takes the reader beyond the areas covered by the surveys, to inspire and guide further research.
Multifractal theory was introduced by theoretical physicists in 1986. Since then, multifractals have increasingly been studied by mathematicians. This new work presents the latest research on random results on random multifractals and the physical thermodynamical interpretation of these results. As the amount of work in this area increases, Lars Olsen presents a unifying approach to current multifractal theory. Featuring high quality, original research material, this important new book fills a gap in the current literature available, providing a rigorous mathematical treatment of multifractal measures.
This book addresses the new possibilities that are becoming available in games technology through the development of programmable hardware. It is helpful for students of game technology and established game programmers and developers who want to update their expertise to the new technology.
This book seeks to explore the history of descriptive geometry in relation to its circulation in the 19th century, which had been favoured by the transfers of the model of the Ecole Polytechnique to other countries. The book also covers the diffusion of its teaching from higher instruction to technical and secondary teaching. In relation to that, there is analysis of the role of the institution - similar but definitely not identical in the different countries - in the field under consideration. The book contains chapters focused on different countries, areas, and institutions, written by specialists of the history of the field. Insights on descriptive geometry are provided in the context of the mathematical aspect, the aspect of teaching in particular to non-mathematicians, and the institutions themselves.
Specialized as it might be, continuum theory is one of the most intriguing areas in mathematics. However, despite being popular journal fare, few books have thoroughly explored this interesting aspect of topology. In Topics on Continua, Sergio Macias, one of the field's leading scholars, presents four of his favorite continuum topics: inverse limits, Jones's set function T, homogenous continua, and n-fold hyperspaces, and in doing so, presents the most complete set of theorems and proofs ever contained in a single topology volume. Many of the results presented have previously appeared only in research papers, and some appear here for the first time. After building the requisite background and exploring the inverse limits of continua, the discussions focus on Professor Jones's set function T and continua for which T is continuous. An introduction to topological groups and group actions lead to a proof of Effros's Theorem, followed by a presentation of two decomposition theorems. The author then offers an in-depth study of n-fold hyperspaces. This includes their general properties, conditions that allow points of n-fold symmetric products to be arcwise accessible from their complement, points that arcwise disconnect the n-fold hyperspaces, the n-fold hyperspaces of graphs, and theorems relating n-fold hyperspaces and cones. The concluding chapter presents a series of open questions on each topic discussed in the book. With more than a decade of teaching experience, Macias is able to put forth exceptionally cogent discussions that not only give beginning mathematicians a strong grounding in continuum theory, but also form an authoritative, single-source guide through some of topology's most captivating facets.
This is a unified treatment of the various algebraic approaches to geometric spaces. The study of algebraic curves in the complex projective plane is the natural link between linear geometry at an undergraduate level and algebraic geometry at a graduate level, and it is also an important topic in geometric applications, such as cryptography. 380 years ago, the work of Fermat and Descartes led us to study geometric problems using coordinates and equations. Today, this is the most popular way of handling geometrical problems. Linear algebra provides an efficient tool for studying all the first degree (lines, planes) and second degree (ellipses, hyperboloids) geometric figures, in the affine, the Euclidean, the Hermitian and the projective contexts. But recent applications of mathematics, like cryptography, need these notions not only in real or complex cases, but also in more general settings, like in spaces constructed on finite fields. And of course, why not also turn our attention to geometric figures of higher degrees? Besides all the linear aspects of geometry in their most general setting, this book also describes useful algebraic tools for studying curves of arbitrary degree and investigates results as advanced as the Bezout theorem, the Cramer paradox, topological group of a cubic, rational curves etc. Hence the book is of interest for all those who have to teach or study linear geometry: affine, Euclidean, Hermitian, projective; it is also of great interest to those who do not want to restrict themselves to the undergraduate level of geometric figures of degree one or two.
Spatial data analysis is a fast growing area and Voronoi diagrams provide a means of naturally partitioning space into subregions to facilitate spatial data manipulation, modelling of spatial structures, pattern recognition and locational optimization. With such versatility, the Voronoi diagram and its relative, the Delaunay triangulation, provide valuable tools for the analysis of spatial data. This is a rapidly growing research area and in this fully updated second edition the authors provide an up-to-date and comprehensive unification of all the previous literature on the subject of Voronoi diagrams. Features:&UL; &LI; Expands on the highly acclaimed first edition&LI; Provides an up-to-date and comprehensive survey of the existing literature on Voronoi diagrams&LI; Includes a useful compendium of applications&LI; Contains an extensive bibliography&/UL; The authors guide the reader through all the necessary mathematical background, before introducing a number of generalizations of Voronoi diagrams in Chapter 3. The subsequent chapters cover algorithms, random Voronoi diagrams, spatial interpolation, multivariate data manipulation, spatial process models, point pattern analysis and locational optimization. Emphasis of a particular perspective is deliberately avoided in order to provide a comprehensive and balanced treatment of the topic. A wide range of applications are discussed, enabling this book to serve as an important reference volume on the topic. The text will appeal to students and researchers studying spatial data in a number of areas, in particular applied probability, computational geometry and Geographic Information Science (GIS). This book will appeal equally to those whose interests in Voronoi diagrams are theoretical, practical or both.
Read the masters! Experience has shown that this is good advice for the serious mathematics student. This book contains a selection of the classical mathematical papers related to fractal geometry. For the convenience of the student or scholar wishing to learn about fractal geometry, nineteen of these papers are collected here in one place. Twelve of the nineteen have been translated into English from German, French, or Russian. In many branches of science, the work of previous generations is of interest only for historical reasons. This is much less so in mathematics.1 Modern-day mathematicians can learn (and even find good ideas) by reading the best of the papers of bygone years. In preparing this volume, I was surprised by many of the ideas that come up.
What do proteins and pop-up cards have in common? How is opening a grocery bag different from opening a gift box? How can you cut out the letters for a whole word all at once with one straight scissors cut? How many ways are there to flatten a cube? You can answer these questions and more through the mathematics of folding and unfolding. From this book, you will discover new and old mathematical theorems by folding paper and find out how to reason toward proofs. With the help of 200 color figures, author Joseph O'Rourke explains these fascinating folding problems starting from high school algebra and geometry and introducing more advanced concepts in tangible contexts as they arise. He shows how variations on these basic problems lead directly to the frontiers of current mathematical research and offers ten accessible unsolved problems for the enterprising reader. Before tackling these, you can test your skills on fifty exercises with complete solutions. The book's Web site, http: //www.howtofoldit.org, has dynamic animations of many of the foldings and downloadable templates for readers to fold or cut out.
Spherical Geometry and Its Applications introduces spherical geometry and its practical applications in a mathematically rigorous form. The text can serve as a course in spherical geometry for mathematics majors. Readers from various academic backgrounds can comprehend various approaches to the subject. The book introduces an axiomatic system for spherical geometry and uses it to prove the main theorems of the subject. It also provides an alternate approach using quaternions. The author illustrates how a traditional axiomatic system for plane geometry can be modified to produce a different geometric world - but a geometric world that is no less real than the geometric world of the plane. Features: A well-rounded introduction to spherical geometry Provides several proofs of some theorems to appeal to larger audiences Presents principal applications: the study of the surface of the earth, the study of stars and planets in the sky, the study of three- and four-dimensional polyhedra, mappings of the sphere, and crystallography Many problems are based on propositions from the ancient text Sphaerica of Menelaus
A New World of Geometry Awaits Your Discovery! The last stone falls out ... a rush of ancient air ... the glint of gold ... the tingle of discovery ... When explorers first opened the tombs of the ancient pharaohs, they knew that they had discovered something wonderful. That feeling, that same passionate sense of discovery, is one of the most powerful educational tools a text can deliver. Geometry by Discovery is an exciting new approach to geometry. This ground-breaking text taps the pedagogical value of discovery to help students stretch their geometric perspective and hone their geometric intuition. It actively engages students in solving mathematical problems, and empowers them to be successful problem-solvers and discoverers of mathematical ideas.
Going far beyond the standard texts, this book extensively covers boundary integral equation (BIE) formulations and the boundary element method (BEM). The first section introduces BIE formulations for potential and elasticity problems, following the modern regularization approach - the fundamental starting point for research in this field. Secondly, a clear description of BIE formulations for wave and elastodynamics problems, in both time and frequency domains is presented. Finally, recent research in the field, related to variational integral formulations, use of geometrical symmetry, shape sensitivity and fracture mechanics is summarised. Within the text a broad range of application areas, industrial as well as research related, are examined. These include:
There is nothing quite like that feeling you get when you see that look of recognition and enjoyment on your students' faces. Not just the strong ones, but everyone is nodding in agreement during your first explanation of the geometry of directional derivatives.
Presenting an overview of most aspects of modern Banach space theory and its applications, this handbook offers up-to-date surveys by a range of expert authors. The surveys discuss the relation of the subject with such areas as harmonic analysis, complex analysis, classical convexity, probability theory, operator theory, combinatorics, logic, geometric measure theory and partial differential equations. It begins with a chapter on basic concepts in Banach space theory, which contains all the background needed for reading any other chapter. Each of the 21 articles after his is devoted to one specific direction of Banach space theory or its applications. Each article contains a motivated introduction as well as an exposition of the main results, methods and open problems in its specific direction. Many articles contain new proofs of known results as well as expositions of proofs which are hard to locate in the literature or are only outlined in the original research papers. The handbook should be useful to researchers in Banach theory, as well as graduate students and mathematicians who want to get an idea of the various developments in Banach space theory.
Although twistor theory originated as an approach to the unification of quantum theory and general relativity, twistor correspondences and their generalizations have provided powerful mathematical tools for studying problems in differential geometry, nonlinear equations, and representation theory. At the same time, the theory continues to offer promising new insights into the nature of quantum theory and gravitation. Further Advances in Twistor Theory, Volume III: Curved Twistor Spaces is actually the fourth in a series of books compiling articles from Twistor Newsletter-a somewhat informal journal published periodically by the Oxford research group of Roger Penrose. Motivated both by questions in differential geometry and by the quest to find a twistor correspondence for general Ricci-flat space times, this volume explores deformed twistor spaces and their applications. Articles from the world's leading researchers in this field-including Roger Penrose-have been written in an informal, easy-to-read style and arranged in four chapters, each supplemented by a detailed introduction. Collectively, they trace the development of the twistor programme over the last 20 years and provide an overview of its recent advances and current status.
Comprising a selection of expository and research papers, Harmonic Analysis and Integral Geometry grew from presentations offered at the July 1998 Summer University of Safi, Morocco-an annual, advanced research school and congress. This lively and very successful event drew the attendance of many top researchers, who offered both individual lectures and coordinated courses on specific research topics within this fast growing subject. Harmonic Analysis and Integral Geometry presents important recent advances in the fields of Radon transforms, integral geometry, and harmonic analysis on Lie groups and symmetric spaces. Several articles are devoted to the new theory of Radon transforms on trees. With its related presentations addressing recent developments in various aspects of these intriguing areas of study, Harmonic Analysis and Integral Geometry becomes an important addition not only to the Research Notes in Mathematics series, but to the general mathematics literature.
This superb text describes a novel and powerful method for allowing
design engineers to firstly model a linear problem in heat
conduction, then build a solution in an explicit form and finally
obtain a numerical solution. It constitutes a modelling and
calculation tool based on a very efficient and systemic
methodological approach.
The origami introduced in this book is based on simple techniques. Some were previously known by origami artists and some were discovered by the author. Curved-Folding Origami Design shows a way to explore new area of origami composed of curved folds. Each technique is introduced in a step-by-step fashion, followed by some beautiful artwork examples. A commentary explaining the theory behind the technique is placed at the end of each chapter. Features Explains the techniques for designing curved-folding origami in seven chapters Contains many illustrations and photos (over 140 figures), with simple instructions Contains photos of 24 beautiful origami artworks, as well as their crease patterns Some basic theories behind the techniques are introduced
Focusing methodologically on those historical aspects that are relevant to supporting intuition in axiomatic approaches to geometry, the book develops systematic and modern approaches to the three core aspects of axiomatic geometry: Euclidean, non-Euclidean and projective. Historically, axiomatic geometry marks the origin of formalized mathematical activity. It is in this discipline that most historically famous problems can be found, the solutions of which have led to various presently very active domains of research, especially in algebra. The recognition of the coherence of two-by-two contradictory axiomatic systems for geometry (like one single parallel, no parallel at all, several parallels) has led to the emergence of mathematical theories based on an arbitrary system of axioms, an essential feature of contemporary mathematics. This is a fascinating book for all those who teach or study axiomatic geometry, and who are interested in the history of geometry or who want to see a complete proof of one of the famous problems encountered, but not solved, during their studies: circle squaring, duplication of the cube, trisection of the angle, construction of regular polygons, construction of models of non-Euclidean geometries, etc. It also provides hundreds of figures that support intuition. Through 35 centuries of the history of geometry, discover the birth and follow the evolution of those innovative ideas that allowed humankind to develop so many aspects of contemporary mathematics. Understand the various levels of rigor which successively established themselves through the centuries. Be amazed, as mathematicians of the 19th century were, when observing that both an axiom and its contradiction can be chosen as a valid basis for developing a mathematical theory. Pass through the door of this incredible world of axiomatic mathematical theories
Natural scientists perceive and classify organisms primarily on the basis of their appearance and structure- their form , defined as that characteristic remaining invariant after translation, rotation, and possibly reflection of the object. The quantitative study of form and form change comprises the field of morphometrics. For morphometrics to succeed, it needs techniques that not only satisfy mathematical and statistical rigor but also attend to the scientific issues.
A pioneering artist continues his visionary inquiry into hyperspace In this insightful book, which is a revisionist math history as well as a revisionist art history, Tony Robbin, well known for his innovative computer visualizations of hyperspace, investigates different models of the fourth dimension and how these are applied in art and physics. Robbin explores the distinction between the slicing, or Flatland, model and the projection, or shadow, model. He compares the history of these two models and their uses and misuses in popular discussions. Robbin breaks new ground with his original argument that Picasso used the projection model to invent cubism, and that Minkowski had four-dimensional projective geometry in mind when he structured special relativity. The discussion is brought to the present with an exposition of the projection model in the most creative ideas about space in contemporary mathematics such as twisters, quasicrystals, and quantum topology. Robbin clarifies these esoteric concepts with understandable drawings and diagrams. Robbin proposes that the powerful role of projective geometry in the development of current mathematical ideas has been long overlooked and that our attachment to the slicing model is essentially a conceptual block that hinders progress in understanding contemporary models of spacetime. He offers a fascinating review of how projective ideas are the source of some of today's most exciting developments in art, math, physics, and computer visualization.
This book encompasses a wide range of mathematical concepts
relating to regularly repeating surface decoration from basic
principles of symmetry to more complex issues of graph theory,
group theory and topology. It presents a comprehensive means of
classifying and constructing patterns and tilings. The
classification of designs is investigated and discussed forming a
broad basis upon which designers may build their own ideas. A wide
range of original illustrative material is included. |
![]() ![]() You may like...
A Collection of Cambridge Mathematical…
John Martin Frederick Wright
Paperback
R563
Discovery Miles 5 630
I. C. S. Reference Library: Types of…
International Correspondence Schools
Paperback
R639
Discovery Miles 6 390
|