![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Geometry > General
A First Course in Chaotic Dynamical Systems: Theory and Experiment, Second Edition The long-anticipated revision of this well-liked textbook offers many new additions. In the twenty-five years since the original version of this book was published, much has happened in dynamical systems. Mandelbrot and Julia sets were barely ten years old when the first edition appeared, and most of the research involving these objects then centered around iterations of quadratic functions. This research has expanded to include all sorts of different types of functions, including higher-degree polynomials, rational maps, exponential and trigonometric functions, and many others. Several new sections in this edition are devoted to these topics. The area of dynamical systems covered in A First Course in Chaotic Dynamical Systems: Theory and Experiment, Second Edition is quite accessible to students and also offers a wide variety of interesting open questions for students at the undergraduate level to pursue. The only prerequisite for students is a one-year calculus course (no differential equations required); students will easily be exposed to many interesting areas of current research. This course can also serve as a bridge between the low-level, often non-rigorous calculus courses, and the more demanding higher-level mathematics courses. Features More extensive coverage of fractals, including objects like the Sierpinski carpet and others that appear as Julia sets in the later sections on complex dynamics, as well as an actual chaos "game." More detailed coverage of complex dynamical systems like the quadratic family and the exponential maps. New sections on other complex dynamical systems like rational maps. A number of new and expanded computer experiments for students to perform. About the Author Robert L. Devaney is currently professor of mathematics at Boston University. He received his PhD from the University of California at Berkeley under the direction of Stephen Smale. He taught at Northwestern University and Tufts University before coming to Boston University in 1980. His main area of research is dynamical systems, primarily complex analytic dynamics, but also including more general ideas about chaotic dynamical systems. Lately, he has become intrigued with the incredibly rich topological aspects of dynamics, including such things as indecomposable continua, Sierpinski curves, and Cantor bouquets.
A one-stop reference to fractional factorials and related
orthogonal arrays.
This new edition of Six Simple Twists: The Pleat Pattern Approach to Origami Tessellation Design introduces an innovative pleat pattern technique for origami designs that is easily accessible to anyone who enjoys the geometry of paper. The book begins with six basic forms meant to ease the reader into the style, and then systematically scaffolds the instructions to build a strong understanding of the techniques, leading to instructions on a limitless number of patterns. It then describes a process of designing additional building blocks. At the end, what emerges is a fascinating artform that will enrich folders for many years. Unlike standard, project-based origami books, Six Simple Twists focuses on how to design, rather than construct. In this thoroughly updated second edition, the book explores new techniques and example tessellations, with full-page images, and mathematical analysis of the patterns. A reader will, through practice, gain the ability to create still more complex and fascinating designs. Key Features Introduces the reader to origami tessellations and demonstrates their place in the origami community New layout and instructional approach restructure the book from the ground up Addresses common tessellation questions, such as what types of paper are best to use, and how this artform rose in popularity Teaches the reader how to grid a sheet of paper and the importance of the pre-creases Gives the reader the ability to create and understand tessellations through scaffolded instruction Includes exercises to test understanding Introduces a new notation system for precisely describing pleat intersections Analyzes pleat intersections mathematically using geometrically-focused models, including information about Brocard points
This book discusses how to design "good" geometric puzzles: two-dimensional dissection puzzles, polyhedral dissections, and burrs. It outlines major categories of geometric puzzles and provides examples, sometimes going into the history and philosophy of those examples. The author presents challenges and thoughtful questions, as well as practical design and woodworking tips to encourage the reader to build his own puzzles and experiment with his own designs. Aesthetics, phychology, and mathematical considerations all factor into the definition of the quality of a puzzle.
This is a collection of surveys on important mathematical ideas, their origin, their evolution and their impact in current research. The authors are mathematicians who are leading experts in their fields. The book is addressed to all mathematicians, from undergraduate students to senior researchers, regardless of the specialty.
1. This book has a market across criminology and criminal justice, sociology and law. 2. While there is a healthy market for books on the death penalty, there is a gap for a book that offers a rigorous theoretical approach to making sense of the data. 3. While many studies have focused specifically on racial bias, this book considers a range of social characteristics and their impact on sentencing, including class, moral reputation and organizational status.
Since techniques from topology and category theory have been used increasingly by theoretical computer scientists in recent years, it was decided during the Oxford Topology Symposium to hold a special session which would be devoted to the application of these topics in computer science. By holding this session in the context of the topology symposium, the organizers hoped to achieve a cross-fertilization between the communities they brought together - providing mathematicians with a course of new problems with a more practical flavour, and computer scientists with a source of solutions and ideas.
This monograph gives a short introduction to the relevant modern parts of discrete geometry, in addition to leading the reader to the frontiers of geometric research on sphere arrangements. The readership is aimed at advanced undergraduate and early graduate students, as well as interested researchers. It contains more than 40 open research problems ideal for graduate students and researchers in mathematics and computer science. Additionally, this book may be considered ideal for a one-semester advanced undergraduate or graduate level course. The core part of this book is based on three lectures given by the author at the Fields Institute during the thematic program on Discrete Geometry and Applications and contains four core topics. The first two topics surround active areas that have been outstanding from the birth of discrete geometry, namely dense sphere packings and tilings. Sphere packings and tilings have a very strong connection to number theory, coding, groups, and mathematical programming. Extending the tradition of studying packings of spheres, is the investigation of the monotonicity of volume under contractions of arbitrary arrangements of spheres. The third major topic of this book can be found under the sections on ball-polyhedra that study the possibility of extending the theory of convex polytopes to the family of intersections of congruent balls. This section of the text is connected in many ways to the above-mentioned major topics and it is also connected to some other important research areas as the one on coverings by planks (with close ties to geometric analysis). This fourth core topic is discussed under covering balls by cylinders. "
Spatial data analysis is a fast growing area and Voronoi diagrams provide a means of naturally partitioning space into subregions to facilitate spatial data manipulation, modelling of spatial structures, pattern recognition and locational optimization. With such versatility, the Voronoi diagram and its relative, the Delaunay triangulation, provide valuable tools for the analysis of spatial data. This is a rapidly growing research area and in this fully updated second edition the authors provide an up-to-date and comprehensive unification of all the previous literature on the subject of Voronoi diagrams. Features:&UL; &LI; Expands on the highly acclaimed first edition&LI; Provides an up-to-date and comprehensive survey of the existing literature on Voronoi diagrams&LI; Includes a useful compendium of applications&LI; Contains an extensive bibliography&/UL; The authors guide the reader through all the necessary mathematical background, before introducing a number of generalizations of Voronoi diagrams in Chapter 3. The subsequent chapters cover algorithms, random Voronoi diagrams, spatial interpolation, multivariate data manipulation, spatial process models, point pattern analysis and locational optimization. Emphasis of a particular perspective is deliberately avoided in order to provide a comprehensive and balanced treatment of the topic. A wide range of applications are discussed, enabling this book to serve as an important reference volume on the topic. The text will appeal to students and researchers studying spatial data in a number of areas, in particular applied probability, computational geometry and Geographic Information Science (GIS). This book will appeal equally to those whose interests in Voronoi diagrams are theoretical, practical or both.
A.D. Alexandrov is considered by many to be the father of intrinsic geometry, second only to Gauss in surface theory. That appraisal stems primarily from this masterpiece--now available in its entirely for the first time since its 1948 publication in Russian. Alexandrov's treatise begins with an outline of the basic concepts, definitions, and results relevant to intrinsic geometry. It reviews the general theory, then presents the requisite general theorems on rectifiable curves and curves of minimum length. Proof of some of the general properties of the intrinsic metric of convex surfaces follows. The study then splits into two almost independent lines: further exploration of the intrinsic geometry of convex surfaces and proof of the existence of a surface with a given metric. The final chapter reviews the generalization of the whole theory to convex surfaces in the Lobachevskii space and in the spherical space, concluding with an outline of the theory of nonconvex surfaces. Alexandrov's work was both original and extremely influential. This book gave rise to studying surfaces "in the large," rejecting the limitations of smoothness, and reviving the style of Euclid. Progress in geometry in recent decades correlates with the resurrection of the synthetic methods of geometry and brings the ideas of Alexandrov once again into focus. This text is a classic that remains unsurpassed in its clarity and scope.
Read the masters! Experience has shown that this is good advice for the serious mathematics student. This book contains a selection of the classical mathematical papers related to fractal geometry. For the convenience of the student or scholar wishing to learn about fractal geometry, nineteen of these papers are collected here in one place. Twelve of the nineteen have been translated into English from German, French, or Russian. In many branches of science, the work of previous generations is of interest only for historical reasons. This is much less so in mathematics.1 Modern-day mathematicians can learn (and even find good ideas) by reading the best of the papers of bygone years. In preparing this volume, I was surprised by many of the ideas that come up.
A New World of Geometry Awaits Your Discovery! The last stone falls out ... a rush of ancient air ... the glint of gold ... the tingle of discovery ... When explorers first opened the tombs of the ancient pharaohs, they knew that they had discovered something wonderful. That feeling, that same passionate sense of discovery, is one of the most powerful educational tools a text can deliver. Geometry by Discovery is an exciting new approach to geometry. This ground-breaking text taps the pedagogical value of discovery to help students stretch their geometric perspective and hone their geometric intuition. It actively engages students in solving mathematical problems, and empowers them to be successful problem-solvers and discoverers of mathematical ideas.
Going far beyond the standard texts, this book extensively covers boundary integral equation (BIE) formulations and the boundary element method (BEM). The first section introduces BIE formulations for potential and elasticity problems, following the modern regularization approach - the fundamental starting point for research in this field. Secondly, a clear description of BIE formulations for wave and elastodynamics problems, in both time and frequency domains is presented. Finally, recent research in the field, related to variational integral formulations, use of geometrical symmetry, shape sensitivity and fracture mechanics is summarised. Within the text a broad range of application areas, industrial as well as research related, are examined. These include:
This superb text describes a novel and powerful method for allowing
design engineers to firstly model a linear problem in heat
conduction, then build a solution in an explicit form and finally
obtain a numerical solution. It constitutes a modelling and
calculation tool based on a very efficient and systemic
methodological approach.
The aim of Summable Spaces and Their Duals, Matrix Transformations and Geometric Properties is to discuss primarily about different kinds of summable spaces, compute their duals and then characterize several matrix classes transforming one summable space into other. The book also discusses several geometric properties of summable spaces, as well as dealing with the construction of summable spaces using Orlicz functions, and explores several structural properties of such spaces. Each chapter contains a conclusion section highlighting the importance of results, and points the reader in the direction of possible new ideas for further study. Features Suitable for graduate schools, graduate students, researchers and faculty, and could be used as a key text for special Analysis seminars Investigates different types of summable spaces and computes their duals Characterizes several matrix classes transforming one summable space into other Discusses several geometric properties of summable spaces Examines several possible generalizations of Orlicz sequence spaces
Comprising a selection of expository and research papers, Harmonic Analysis and Integral Geometry grew from presentations offered at the July 1998 Summer University of Safi, Morocco-an annual, advanced research school and congress. This lively and very successful event drew the attendance of many top researchers, who offered both individual lectures and coordinated courses on specific research topics within this fast growing subject. Harmonic Analysis and Integral Geometry presents important recent advances in the fields of Radon transforms, integral geometry, and harmonic analysis on Lie groups and symmetric spaces. Several articles are devoted to the new theory of Radon transforms on trees. With its related presentations addressing recent developments in various aspects of these intriguing areas of study, Harmonic Analysis and Integral Geometry becomes an important addition not only to the Research Notes in Mathematics series, but to the general mathematics literature.
Specialized as it might be, continuum theory is one of the most intriguing areas in mathematics. However, despite being popular journal fare, few books have thoroughly explored this interesting aspect of topology. In Topics on Continua, Sergio Macias, one of the field's leading scholars, presents four of his favorite continuum topics: inverse limits, Jones's set function T, homogenous continua, and n-fold hyperspaces, and in doing so, presents the most complete set of theorems and proofs ever contained in a single topology volume. Many of the results presented have previously appeared only in research papers, and some appear here for the first time. After building the requisite background and exploring the inverse limits of continua, the discussions focus on Professor Jones's set function T and continua for which T is continuous. An introduction to topological groups and group actions lead to a proof of Effros's Theorem, followed by a presentation of two decomposition theorems. The author then offers an in-depth study of n-fold hyperspaces. This includes their general properties, conditions that allow points of n-fold symmetric products to be arcwise accessible from their complement, points that arcwise disconnect the n-fold hyperspaces, the n-fold hyperspaces of graphs, and theorems relating n-fold hyperspaces and cones. The concluding chapter presents a series of open questions on each topic discussed in the book. With more than a decade of teaching experience, Macias is able to put forth exceptionally cogent discussions that not only give beginning mathematicians a strong grounding in continuum theory, but also form an authoritative, single-source guide through some of topology's most captivating facets.
Multifractal theory was introduced by theoretical physicists in 1986. Since then, multifractals have increasingly been studied by mathematicians. This new work presents the latest research on random results on random multifractals and the physical thermodynamical interpretation of these results. As the amount of work in this area increases, Lars Olsen presents a unifying approach to current multifractal theory. Featuring high quality, original research material, this important new book fills a gap in the current literature available, providing a rigorous mathematical treatment of multifractal measures.
Show that blow-ups or reverse flips (in the sense of the minimal model program) of rational symplectic manifolds with point centers create Floer-non-trivial Lagrangian tori. These results are part of a conjectural decomposition of the Fukaya category of a compact symplectic manifold with a singularity-free running of the minimal model program, analogous to the description of Bondal-Orlov (Derived categories of coherent sheaves, 2002) and Kawamata (Derived categories of toric varieties, 2006) of the bounded derived category of coherent sheaves on a compact complex manifold.
There is nothing quite like that feeling you get when you see that look of recognition and enjoyment on your students' faces. Not just the strong ones, but everyone is nodding in agreement during your first explanation of the geometry of directional derivatives.
This book seeks to explore the history of descriptive geometry in relation to its circulation in the 19th century, which had been favoured by the transfers of the model of the Ecole Polytechnique to other countries. The book also covers the diffusion of its teaching from higher instruction to technical and secondary teaching. In relation to that, there is analysis of the role of the institution - similar but definitely not identical in the different countries - in the field under consideration. The book contains chapters focused on different countries, areas, and institutions, written by specialists of the history of the field. Insights on descriptive geometry are provided in the context of the mathematical aspect, the aspect of teaching in particular to non-mathematicians, and the institutions themselves.
This book addresses the new possibilities that are becoming available in games technology through the development of programmable hardware. It is helpful for students of game technology and established game programmers and developers who want to update their expertise to the new technology.
A conversation between Euclid and the ghost of Socrates. . . the paths of the moon and the sun charted by the stone-builders of ancient Europe. . .the Greek ideal of the golden mean by which they measured beauty. . . Combining historical fact with a retelling of ancient myths and legends, this lively and engaging book describes the historical, religious and geographical background that gave rise to mathematics in ancient Egypt, Babylon, China, Greece, India, and the Arab world. Each chapter contains a case study where mathematics is applied to the problems of the era, including the area of triangles and volume of the Egyptian pyramids; the Babylonian sexagesimal number system and our present measure of space and time which grew out of it; the use of the abacus and remainder theory in China; the invention of trigonometry by Arab mathematicians; and the solution of quadratic equations by completing the square developed in India. These insightful commentaries will give mathematicians and general historians a better understanding of why and how mathematics arose from the problems of everyday life, while the author's easy, accessible writing style will open fascinating chapters in the history of mathematics to a wide audience of general readers.
The origami introduced in this book is based on simple techniques. Some were previously known by origami artists and some were discovered by the author. Curved-Folding Origami Design shows a way to explore new area of origami composed of curved folds. Each technique is introduced in a step-by-step fashion, followed by some beautiful artwork examples. A commentary explaining the theory behind the technique is placed at the end of each chapter. Features Explains the techniques for designing curved-folding origami in seven chapters Contains many illustrations and photos (over 140 figures), with simple instructions Contains photos of 24 beautiful origami artworks, as well as their crease patterns Some basic theories behind the techniques are introduced |
You may like...
Theoretical and Practical Teaching…
Sumreen Asim, Joshua Ellis, …
Hardcover
R5,370
Discovery Miles 53 700
English Language Teacher Education in…
Liz England, Georgios Kormpas, …
Paperback
R1,160
Discovery Miles 11 600
Invitation to Invent - A Physical…
Clg of William and Mary/Ctr Gift Ed
Paperback
R1,013
Discovery Miles 10 130
Teaching Music to Students with Special…
Alice Hammel, Ryan Hourigan
Hardcover
R3,280
Discovery Miles 32 800
Developing Emotional Intelligence in the…
Sue Colverd, Bernard Hodgkin
Hardcover
R3,785
Discovery Miles 37 850
|