![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Geometry > General
In recent years, number theory and arithmetic geometry have been enriched by new techniques from noncommutative geometry, operator algebras, dynamical systems, and K-Theory. This volume collects and presents up-to-date research topics in arithmetic and noncommutative geometry and ideas from physics that point to possible new connections between the fields of number theory, algebraic geometry and noncommutative geometry. The articles collected in this volume present new noncommutative geometry perspectives on classical topics of number theory and arithmetic such as modular forms, class field theory, the theory of reductive p-adic groups, Shimura varieties, the local L-factors of arithmetic varieties. They also show how arithmetic appears naturally in noncommutative geometry and in physics, in the residues of Feynman graphs, in the properties of noncommutative tori, and in the quantum Hall effect.
This is a revised edition of the ?rst printing which appeared in 2002. The book is based on lectures at the University of Bergen, Norway.Over the years these lectures have covered many different aspects and facets of the wonderful ?eld of geometry. Consequently it has never been possible to give a full and ?nal account of geometry as such, at an undergraduatelevel: A carefully consideredselection has always been necessary. The present book constitutes the main central themes of these selections. One of the groups I am aiming at, is future teachers of mathematics. All too oftenthe textsdealingwith geometrywhichgo intothe syllabusforteacher-students present the material in ways which appear pedantic and formalistic, suppressing the very powerful and dynamic character of this old ?eld, which at the same time so young. Geometry is a ?eld of mathematical insight, research, history and source of artistic inspiration. And not least important, an integral part of our common cultural heritage.
In the first half of the 19th century geometry changed radically, and withina century it helped to revolutionize both mathematics and physics. It also put the epistemology and the philosophy of science on a new footing. In this volume a sound overview of this development is given by leading mathematicians, physicists, philosophers, and historians of science. This interdisciplinary approach gives this collection a unique character. It can be used by scientists and students, but it also addresses a general readership.
Intuitively, a foliation corresponds to a decomposition of a manifold into a union of connected, disjoint submanifolds of the same dimension, called leaves, which pile up locally like pages of a book. The theory of foliations, as it is known, began with the work of C. Ehresmann and G. Reeb, in the 1940's; however, as Reeb has himself observed, already in the last century P. Painleve saw the necessity of creating a geometric theory (of foliations) in order to better understand the problems in the study of solutions of holomorphic differential equations in the complex field. The development of the theory of foliations was however provoked by the following question about the topology of manifolds proposed by H. Hopf in the 3 1930's: "Does there exist on the Euclidean sphere S a completely integrable vector field, that is, a field X such that X* curl X * 0?" By Frobenius' theorem, this question is equivalent to the following: "Does there exist on the 3 sphere S a two-dimensional foliation?" This question was answered affirmatively by Reeb in his thesis, where he 3 presents an example of a foliation of S with the following characteristics: There exists one compact leaf homeomorphic to the two-dimensional torus, while the other leaves are homeomorphic to two-dimensional planes which accu mulate asymptotically on the compact leaf. Further, the foliation is C"".
This book constitutes the thoroughly refereed post-conference proceedings of the 40th International Workshop on Graph-Theoretic Concepts in Computer Science, WG 2014, held in Nouan-le-Fuzelier, France, in June 2014. The 32 revised full papers presented were carefully reviewed and selected from 80 submissions. The book also includes two invited papers. The papers cover a wide range of topics in graph theory related to computer science, such as design and analysis of sequential, parallel, randomized, parameterized and distributed graph and network algorithms; structural graph theory with algorithmic or complexity applications; computational complexity of graph and network problems; graph grammars, graph rewriting systems and graph modeling; graph drawing and layouts; computational geometry; random graphs and models of the web and scale-free networks; and support of these concepts by suitable implementations and applications.
Number theory, spectral geometry, and fractal geometry are interlinked in this in-depth study of the vibrations of fractal strings, that is, one-dimensional drums with fractal boundary. Throughout Geometry, Complex Dimensions and Zeta Functions, Second Edition, new results are examined and a new definition of fractality as the presence of nonreal complex dimensions with positive real parts is presented. The new final chapter discusses several new topics and results obtained since the publication of the first edition.
Originally published in 1931 as a guide for mathematically-minded geography students, this book addresses the mathematical theories underlying the construction of maps. Melluish reviews the problems inherent in depicting a sphere on a flat plane and the various ways in which these problems can be solved by varying projections. This book will be of value to anyone with an interest in the mathematical underpinnings of maps.
Eutocius of Ascalon (4th cent. AD) accompanied his edition of the first four books of Apollonius of Perga's Konika with a commentary. His work is relevant to the history of conic sections and important for the textual transmission of Apollonius. This new critical edition contains the first translation into a modern language and complements the Graeco-Arabic edition of the first four books of the Konika (SGA 1-2).
When we studied complex variables in the late 1960s, modem geometry on the complex fie1d and complex function theory were identified in teaching and research as several complex variables. A beginner in the field at that time would have the experience of jumping from the sheaf-theoretical methods employed in the theory of analytic spaces to the P.D.E. methods of the a- problem, with the c1ear understanding that the phenomena lying behind such different methods and problems were the same. A few years later, new important discoveries made c1ear that complex differential geometry was also in the same company. Looking at the historical development of the subject in the first half of the twentieth century shows this was not astonishing. The origin of the theory of functions of several complex variables was tardier than the familiar of analytic functions of one complex variable. The first comprehensive theory textbook by Behnke and Thullen, in the 1930s, expounded the foundations ofthe general theory as set up by Weierstrass, Cousin, Hartogs, and Poincare and c1early put in evidence that the difficulties were all but solved. In aseries of papers from 1936 to 1953, Oka introduced a brilliant collection of new ideas and systematically eliminated aU difficulties. Oka's work had in itse1f a fruitful seed and contained the premises for the opening of wider horizons.
This book is a thoroughly revised result, updated to mid-1995, of the NATO Advanced Research Workshop on "Intelligent Learning Environments: the case of geometry", held in Grenoble, France, November 13-16, 1989. The main aim of the workshop was to foster exchanges among researchers who were concerned with the design of intelligent learning environments for geometry. The problem of student modelling was chosen as a central theme of the workshop, insofar as geometry cannot be reduced to procedural knowledge and because the significance of its complexity makes it of interest for intelligent tutoring system (ITS) development. The workshop centred around the following themes: modelling the knowledge domain, modelling student knowledge, design ing "didactic interaction", and learner control. This book contains revised versions of the papers presented at the workshop. All of the chapters that follow have been written by participants at the workshop. Each formed the basis for a scheduled presentation and discussion. Many are suggestive of research directions that will be carried out in the future. There are four main issues running through the papers presented in this book: * knowledge about geometry is not knowledge about the real world, and materialization of geometrical objects implies a reification of geometry which is amplified in the case of its implementation in a computer, since objects can be manipulated directly and relations are the results of actions (Laborde, Schumann). This aspect is well exemplified by research projects focusing on the design of geometric microworlds (Guin, Laborde).
Mathematicians and non-mathematicians alike have long been fascinated by geometrical problems, particularly those that are intuitive in the sense of being easy to state, perhaps with the aid of a simple diagram. Each section in the book describes a problem or a group of related problems. Usually the problems are capable of generalization of variation in many directions. The book can be appreciated at many levels and is intended for everyone from amateurs to research mathematicians.
Seine Erkenntnisse beeinflussen bis heute die Forschung: David Hilbert baut in seinen Grundlagen der Geometrie" auf Euklids Lehre ein Grundsatzsystem auf, von dem ausgehend er wichtige geometrische Satze ableitet. Die erstmals 1899 erschienene Abhandlung machte Hilbert zu einem der wichtigsten Mathematiker der Neuzeit, der auch den Formalismus entscheidend pragte.
In this textbook the authors present first-year geometry roughly in the order in which it was discovered. The first five chapters show how the ancient Greeks established geometry, together with its numerous practical applications, while more recent findings on Euclidian geometry are discussed as well. The following three chapters explain the revolution in geometry due to the progress made in the field of algebra by Descartes, Euler and Gauss. Spatial geometry, vector algebra and matrices are treated in chapters 9 and 10. The last chapteroffers an introduction to projective geometry, which emerged in the19thcentury. Complemented by numerous examples, exercises, figures and
pictures, the book offers both motivation and insightful
explanations, and provides stimulating and enjoyable reading for
students and teachers alike.
Dedicated to the memory of Chih-Han Sah, this volume continues a long tradition of one of the most influential mathematical seminars of this century. A number of topics are covered, including combinatorial geometry, connections between logic and geometry, Lie groups, algebras and their representations. An additional area of importance is noncommutative algebra and geometry, and its relations to modern physics. Distinguished mathematicians contributing to this work: T.V. Alekseevskaya V. Kac A.V. Borovik A. Kazarnovsky-Krol C.-H. Sah* M. Kontsevich G. Cherlin A. Radul J.L. Dupont A.L. Rosenberg I.M. Gelfand N. White The Gelfand Mathematical Seminar volumes stimulate the birth of significant ideas in contemporary mathematics and remain invaluable reference material. * indicates deceased contributor (Production: please ensure that appropriate symbol be incorporated onto the final back cover design)
A glorious period of Hungarian mathematics started in 1900 when Lipot Fejer discovered the summability of Fourier series.This was followed by the discoveries of his disciples in Fourier analysis and in the theory of analytic functions. At the same time Frederic (Frigyes) Riesz created functional analysis and Alfred Haar gave the first example of wavelets. Later the topics investigated by Hungarian mathematicians broadened considerably, and included topology, operator theory, differential equations, probability, etc. The present volume, the first of two, presents some of the most remarkable results achieved in the twentieth century by Hungarians in analysis, geometry and stochastics. The book is accessible to anyone with a minimum knowledge of mathematics. It is supplemented with an essay on the history of Hungary in the twentieth century and biographies of those mathematicians who are no longer active. A list of all persons referred to in the chapters concludes the volume. "
Edmund Hlawka is a leading number theorist whose work has had a lasting influence on modern number theory and other branches of mathematics. He has contributed to diophantine approximation, the geometry of numbers, uniform distributions, analytic number theory, discrete geometry, convexity, numerical integration, inequalities, differential equations and gas dynamics. Of particular importance are his findings in the geometry of numbers (especially the Minkowski-Hlawka theorem) and uniform distribution. This Selecta volume collects his most important articles, many of which were previously hard to find. It will provide a useful tool for researchers and graduate students working in the areas covered, and includes a general introduction by E. Hlawka.
Topics in Matroid Theory provides a brief introduction to matroid theory with an emphasis on algorithmic consequences.Matroid theory is at the heart of combinatorial optimization and has attracted various pioneers such as Edmonds, Tutte, Cunningham and Lawler among others. Matroid theory encompasses matrices, graphs and other combinatorial entities under a common, solid algebraicframework, thereby providing the analytical tools to solve related difficult algorithmic problems. The monograph contains a rigorousaxiomatic definition of matroids along with other necessary concepts such as duality, minors, connectivity and representability asdemonstrated in matrices, graphs and transversals. The author also presents a deep decomposition result in matroid theory that providesa structural characterization of graphic matroids, and show how this can be extended to signed-graphic matroids, as well as the immediatealgorithmic consequences. "
The work of Professor Eduard Cech had a si~ificant influence on the development of algebraic and general topology and differential geometry. This book, which appears on the occasion of the centenary of Cech's birth, contains some of his most important papers and traces the subsequent trends emerging from his ideas. The body of the book consists of four chapters devoted to algebraic topology, Cech-Stone compactification, dimension theory and differential geometry. Each of these includes a selection of Cech's papers, a brief summary of some results which followed from his work or constituted solutions to the problems he posed, and several selected papers by various authors concerning the areas of study he initiated. The book also contains a concise biography borrowed with minor changes from the book Topological papers of E. tech, a list of Cech's publications and a very brief note on his activity in the didactics of mathematics. The editors wish to express their sincere gratitude to all who contributed to the completion and publication of this book.
I. The topics of this book The concept of a matroid has been known for more than five decades. Whitney (1935) introduced it as a common generalization of graphs and matrices. In the last two decades, it has become clear how important the concept is, for the following reasons: (1) Combinatorics (or discrete mathematics) was considered by many to be a collection of interesting, sometimes deep, but mostly unrelated ideas. However, like other branches of mathematics, combinatorics also encompasses some gen eral tools that can be learned and then applied, to various problems. Matroid theory is one of these tools. (2) Within combinatorics, the relative importance of algorithms has in creased with the spread of computers. Classical analysis did not even consider problems where "only" a finite number of cases were to be studied. Now such problems are not only considered, but their complexity is often analyzed in con siderable detail. Some questions of this type (for example, the determination of when the so called "greedy" algorithm is optimal) cannot even be answered without matroidal tools."
Friedrich Hirzebruch (1927 -2012) was a German mathematician, working in the fields of topology, complex manifolds and algebraic geometry, and a leading figure of his generation. Hirzebruch's first great mathematical achievement was the proof, in 1954, of the generalization of the classical Riemann-Roch theorem to higher dimensional complex manifolds, now known as the Hirzebruch-Riemann-Roch theorem. This used the new techniques of sheaf cohomology and was one of the centerpieces of the explosion of new results in geometry and topology during the 1950s. Further generalization of this led to the Grothendieck-Riemann-Roch theorem, and the Atiyah-Singer index theorem. He received many awards and honors, including the Wolf prize in 1988, the Lobachevsky prize in 1990, and fifteen honorary doctorates. These two volumes collect the majority of his research papers, which cover a variety of topics. In zwei Banden sind fast alle Veroffentlichungen enthalten, die F. Hirzebruch verfasst hat."
Friedrich Hirzebruch (1927 2012) was a German mathematician, working in the fields of topology, complex manifolds and algebraic geometry, and a leading figure of his generation. Hirzebruch s first great mathematical achievement was the proof, in 1954, of the generalization of the classical Riemann-Roch theorem to higher dimensional complex manifolds, now known as the Hirzebruch-Riemann-Roch theorem. This used the new techniques of sheaf cohomology and was one of the centerpieces of the explosion of new results in geometry and topology during the 1950s. Further generalization of this led to the Grothendieck-Riemann-Roch theorem, and the Atiyah-Singer index theorem. He received many awards and honors, including the Wolf prize in 1988, the Lobachevsky prize in 1990, and fifteen honorary doctorates. These two volumes collect the majority of his research papers, which cover a variety of topics."
The nature of time has long puzzled physicists and philosophers. Time potentially has very fundamental yet unknown properties. In 1993 a new model of multi-dimensional time was found to relate closely to properties of the cosmological redshift. An international conference was subsequently convened in April 1996 to examine past, current and new concepts of time as they relate to physics and cosmology. These proceedings incorporate 34 reviews and contributed papers from the conference. The major reviews include observational properties of the redshift, alternative cosmologies, critical problems in cosmology, alternative viewpoints and problems in gravitation theory and particle physics, and new approaches to mathematical models of time. Professionals and students with an interest in cosmology and the structure of the universe will find that this book raises critical problems and explores challenging alternatives to classical viewpoints.
The present book is a translation into English of Elernenta CU'f'Varurn Linearurn-Liber Prirnus, written in Latin, by the Dutch statesman and mathematician Jan de Witt (1625-1672). Together with its sequel, Ele- rnenta CU'f'Varurn Linearurn-Liber Secundus, it constitutes the first text- book on Analytic Geometry, based on the ideas of Descartes, as laid down in his Geornetrie of 1637. The first edition of de Witt's work appeared in 1659 and this translation is its first translation into English. For more details the reader is referred to the Introduction. Apart from this translation and this introduction, the present work con- tains an extensive summary, annotations to the translation, and two ap- pendices on the role of the conics in Greek mathematics. The translation has been made from the second edition, printed by the Blaeu Company in Amsterdam in 1684. In 1997 the translator published a translation into Dutch of the same work, likewise supplied with an introduction, a summary, notes, and two appendices. This edition appeared as a publication of the Stichting Mathe- matisch Centrum Amsterdam. The present translation, however, is a direct translation of the Latin text. The rest of this work is an English version of the introduction, the summary, the notes, and the appendices, based on the Dutch original.
Since their invention in the late seventies, public key cryptosystems have become an indispensable asset in establishing private and secure electronic communication, and this need, given the tremendous growth of the Internet, is likely to continue growing. Elliptic curve cryptosystems represent the state of the art for such systems. Elliptic Curves and Their Applications to Cryptography: An Introduction provides a comprehensive and self-contained introduction to elliptic curves and how they are employed to secure public key cryptosystems. Even though the elegant mathematical theory underlying cryptosystems is considerably more involved than for other systems, this text requires the reader to have only an elementary knowledge of basic algebra. The text nevertheless leads to problems at the forefront of current research, featuring chapters on point counting algorithms and security issues. The Adopted unifying approach treats with equal care elliptic curves over fields of even characteristic, which are especially suited for hardware implementations, and curves over fields of odd characteristic, which have traditionally received more attention. Elliptic Curves and Their Applications: An Introduction has been used successfully for teaching advanced undergraduate courses. It will be of greatest interest to mathematicians, computer scientists, and engineers who are curious about elliptic curve cryptography in practice, without losing the beauty of the underlying mathematics.
Topics in Knot Theory is a state of the art volume which presents surveys of the field by the most famous knot theorists in the world. It also includes the most recent research work by graduate and postgraduate students. The new ideas presented cover racks, imitations, welded braids, wild braids, surgery, computer calculations and plottings, presentations of knot groups and representations of knot and link groups in permutation groups, the complex plane and/or groups of motions. For mathematicians, graduate students and scientists interested in knot theory. |
You may like...
Nonlinear Approaches in Engineering…
Reza N. Jazar, Liming Dai
Hardcover
R4,319
Discovery Miles 43 190
Robots and Lattice Automata
Georgios Ch Sirakoulis, Andrew Adamatzky
Hardcover
Predictor Feedback for Delay Systems…
Iasson Karafyllis, Miroslav Krstic
Hardcover
R3,741
Discovery Miles 37 410
IoT for Smart Grids - Design Challenges…
Kostas Siozios, Dimitrios Anagnostos, …
Hardcover
R3,673
Discovery Miles 36 730
Complex Networks & Their Applications V…
Hocine Cherifi, Sabrina Gaito, …
Hardcover
R7,885
Discovery Miles 78 850
ISCS 2014: Interdisciplinary Symposium…
Ali Sanayei, Otto E. Roessler, …
Hardcover
Automata, Universality, Computation…
Andrew Adamatzky
Hardcover
Complex Networks in Software, Knowledge…
Milos Savic, Mirjana Ivanovic, …
Hardcover
Complex Systems Design & Management…
Gerard Auvray, Jean-Claude Bocquet, …
Hardcover
|