![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Geometry > General
The 'Arithmetic and Geometry' trimester, held at the Hausdorff Research Institute for Mathematics in Bonn, focussed on recent work on Serre's conjecture and on rational points on algebraic varieties. The resulting proceedings volume provides a modern overview of the subject for graduate students in arithmetic geometry and Diophantine geometry. It is also essential reading for any researcher wishing to keep abreast of the latest developments in the field. Highlights include Tim Browning's survey on applications of the circle method to rational points on algebraic varieties and Per Salberger's chapter on rational points on cubic hypersurfaces.
Focusing methodologically on those historical aspects that are relevant to supporting intuition in axiomatic approaches to geometry, the book develops systematic and modern approaches to the three core aspects of axiomatic geometry: Euclidean, non-Euclidean and projective. Historically, axiomatic geometry marks the origin of formalized mathematical activity. It is in this discipline that most historically famous problems can be found, the solutions of which have led to various presently very active domains of research, especially in algebra. The recognition of the coherence of two-by-two contradictory axiomatic systems for geometry (like one single parallel, no parallel at all, several parallels) has led to the emergence of mathematical theories based on an arbitrary system of axioms, an essential feature of contemporary mathematics. This is a fascinating book for all those who teach or study axiomatic geometry, and who are interested in the history of geometry or who want to see a complete proof of one of the famous problems encountered, but not solved, during their studies: circle squaring, duplication of the cube, trisection of the angle, construction of regular polygons, construction of models of non-Euclidean geometries, etc. It also provides hundreds of figures that support intuition. Through 35 centuries of the history of geometry, discover the birth and follow the evolution of those innovative ideas that allowed humankind to develop so many aspects of contemporary mathematics. Understand the various levels of rigor which successively established themselves through the centuries. Be amazed, as mathematicians of the 19th century were, when observing that both an axiom and its contradiction can be chosen as a valid basis for developing a mathematical theory. Pass through the door of this incredible world of axiomatic mathematical theories!
This collection of peer-reviewed conference papers provides comprehensive coverage of cutting-edge research in topological approaches to data analysis and visualization. It encompasses the full range of new algorithms and insights, including fast homology computation, comparative analysis of simplification techniques, and key applications in materials and medical science. The volume also features material on core research challenges such as the representation of large and complex datasets and integrating numerical methods with robust combinatorial algorithms. Reflecting the focus of the TopoInVis 2013 conference, the contributions evince the progress currently being made on finding experimental solutions to open problems in the sector. They provide an inclusive snapshot of state-of-the-art research that enables researchers to keep abreast of the latest developments and provides a foundation for future progress. With papers by some of the world’s leading experts in topological techniques, this volume is a major contribution to the literature in a field of growing importance with applications in disciplines that range from engineering to medicine.
This book collects significant contributions from the fifth conference on Fractal Geometry and Stochastics held in Tabarz, Germany, in March 2014. The book is divided into five topical sections: geometric measure theory, self-similar fractals and recurrent structures, analysis and algebra on fractals, multifractal theory, and random constructions. Each part starts with a state-of-the-art survey followed by papers covering a specific aspect of the topic. The authors are leading world experts and present their topics comprehensibly and attractively. Both newcomers and specialists in the field will benefit from this book.
This is the first book to provide a systematic explanation of both the problems of symplectic topology, and analytical details and techniques in applying the machinery embedded in the Floer theory as a whole. It provides a self-contained exposition of all foundational materials of Floer theory and its applications to various problems arising in symplectic topology. The author gives complete analytic details assuming the reader's knowledge of basic elliptic theory of (first-order) partial differential equations, second-year graduate differential geometry and first-year algebraic topology. He motivates various constructions appearing in Floer theory from the historical context of Lagrange Hamilton's variational principle and Hamiltonian mechanics. He also provides 100 exercises so that readers can test their understanding. The book is a comprehensive resource suitable for experts and newcomers alike."
Published in two volumes, this is the first book to provide a thorough and systematic explanation of symplectic topology, and the analytical details and techniques used in applying the machinery arising from Floer theory as a whole. Volume 2 provides a comprehensive introduction to both Hamiltonian Floer theory and Lagrangian Floer theory, including many examples of their applications to various problems in symplectic topology. The first volume covered the basic materials of Hamiltonian dynamics and symplectic geometry and the analytic foundations of Gromov's pseudoholomorphic curve theory. Symplectic Topology and Floer Homology is a comprehensive resource suitable for experts and newcomers alike.
This book is a unique collection of challenging geometry problems and detailed solutions that will build students' confidence in mathematics. By proposing several methods to approach each problem and emphasizing geometry's connections with different fields of mathematics, Methods of Solving Complex Geometry Problems serves as a bridge to more advanced problem solving. Written by an accomplished female mathematician who struggled with geometry as a child, it does not intimidate, but instead fosters the reader's ability to solve math problems through the direct application of theorems. Containing over 160 complex problems with hints and detailed solutions, Methods of Solving Complex Geometry Problems can be used as a self-study guide for mathematics competitions and for improving problem-solving skills in courses on plane geometry or the history of mathematics. It contains important and sometimes overlooked topics on triangles, quadrilaterals, and circles such as the Menelaus-Ceva theorem, Simson's line, Heron's formula, and the theorems of the three altitudes and medians. It can also be used by professors as a resource to stimulate the abstract thinking required to transcend the tedious and routine, bringing forth the original thought of which their students are capable. Methods of Solving Complex Geometry Problems will interest high school and college students needing to prepare for exams and competitions, as well as anyone who enjoys an intellectual challenge and has a special love of geometry. It will also appeal to instructors of geometry, history of mathematics, and math education courses.
This book examines the problem of maintenance planning and scheduling in industrial production systems. It presents two practically relevant, deterministic mathematical models: the capacitated planned maintenance problem (CPMP) and the weighted uncapacitated planned maintenance problem (WUPMP). It introduces specific optimization algorithms such as construction heuristics, Lagrangean and tabu search metaheuristics. A problem independent hybrid approach links and alternates between two Lagrangean relaxations. It also analyzes the solvability with respect to the computational complexity of several problem classes, polyhedral properties and lower bounds. Computational studies demonstrate the performance of the heuristics, lower bounds, subgradients obtained from heuristics and the quality of dual information. This unique book includes implementation details and an introduction to the necessary theory making it suitable for upper undergraduate students.
Originally published in 1903, this book contains a summary of the contemporary research on the theory of line-geometry. Jessop illustrates the text with many diagrams and various examples of how line theory can be applied. This book will be of particular value to anyone with an interest in the history of mathematics.
This book constitutes revised selected papers from the 42nd International Workshop on Graph-Theoretic Concepts in Computer Science, WG 2016, held in Istanbul, Turkey, in June 2016. The 25 papers presented in this volume were carefully reviewed and selected from 74 submissions.The WG conferences aim to connect theory and practice by demonstrating how graph-theoretic concepts can be applied to various areas of computer science and by extracting new graph problems from applications. Their goal is to present new research results and to identify and explore directions of future research.
And God said, Let there be light; and there was light. Genesis 1,3 Light is not only the basis of our biological existence, but also an essential source of our knowledge about the physical laws of nature, ranging from the seventeenth century geometrical optics up to the twentieth century theory of general relativity and quantum electrodynamics. Folklore Don't give us numbers: give us insight! A contemporary natural scientist to a mathematician The present book is the second volume of a comprehensive introduction to themathematicalandphysicalaspectsofmodernquantum?eldtheorywhich comprehends the following six volumes: Volume I: Basics in Mathematics and Physics Volume II: Quantum Electrodynamics Volume III: Gauge Theory Volume IV: Quantum Mathematics Volume V: The Physics of the Standard Model Volume VI: Quantum Gravitation and String Theory. It is our goal to build a bridge between mathematicians and physicists based on the challenging question about the fundamental forces in * macrocosmos (the universe) and * microcosmos (the world of elementary particles). The six volumes address a broad audience of readers, including both und- graduate and graduate students, as well as experienced scientists who want to become familiar with quantum ?eld theory, which is a fascinating topic in modern mathematics and physics.
Symplectic geometry originated in physics, but it has flourished as an independent subject in mathematics, together with its offspring, symplectic topology. Symplectic methods have even been applied back to mathematical physics. Noncommutative geometry has developed an alternative mathematical quantization scheme based on a geometric approach to operator algebras. Deformation quantization, a blend of symplectic methods and noncommutative geometry, approaches quantum mechanics from a more algebraic viewpoint, as it addresses quantization as a deformation of Poisson structures. This volume contains seven chapters based on lectures given by invited speakers at two May 2010 workshops held at the Mathematical Sciences Research Institute: Symplectic and Poisson Geometry in Interaction with Analysis, Algebra and Topology (honoring Alan Weinstein, one of the key figures in the field) and Symplectic Geometry, Noncommutative Geometry and Physics. The chapters include presentations of previously unpublished results and comprehensive reviews, including recent developments in these areas.
The study of geometric discrepancy, which provides a framework for quantifying the quality of a distribution of a finite set of points, has experienced significant growth in recent decades. This book provides a self-contained course in number theory, Fourier analysis and geometric discrepancy theory, and the relations between them, at the advanced undergraduate or beginning graduate level. It starts as a traditional course in elementary number theory, and introduces the reader to subsequent material on uniform distribution of infinite sequences, and discrepancy of finite sequences. Both modern and classical aspects of the theory are discussed, such as Weyl's criterion, Benford's law, the Koksma Hlawka inequality, lattice point problems, and irregularities of distribution for convex bodies. Fourier analysis also features prominently, for which the theory is developed in parallel, including topics such as convergence of Fourier series, one-sided trigonometric approximation, the Poisson summation formula, exponential sums, decay of Fourier transforms, and Bessel functions."
The study of geometric discrepancy, which provides a framework for quantifying the quality of a distribution of a finite set of points, has experienced significant growth in recent decades. This book provides a self-contained course in number theory, Fourier analysis and geometric discrepancy theory, and the relations between them, at the advanced undergraduate or beginning graduate level. It starts as a traditional course in elementary number theory, and introduces the reader to subsequent material on uniform distribution of infinite sequences, and discrepancy of finite sequences. Both modern and classical aspects of the theory are discussed, such as Weyl's criterion, Benford's law, the Koksma Hlawka inequality, lattice point problems, and irregularities of distribution for convex bodies. Fourier analysis also features prominently, for which the theory is developed in parallel, including topics such as convergence of Fourier series, one-sided trigonometric approximation, the Poisson summation formula, exponential sums, decay of Fourier transforms, and Bessel functions."
Wondrous One Sheet Origami is a how-to book full of beautiful origami designs covering a wide range of folding levels from simple to high intermediate, with more emphasis on the latter. The book is meant for audiences 12 years of age and above, and children folding at higher than age level. Most of the designs are flat and suitable for mounting on cards or framing as gifts. Features * Richly illustrated full-color book with clear, crisp diagrams following international standard, and an abundance of photographs of finished models * Select designs hand-picked by the author based on social media responses * Most of the designs incorporate color-change, a technique showing both sides of paper for enhanced beauty
Presenting a study of geometric action functionals (i.e., non-negative functionals on the space of unparameterized oriented rectifiable curves), this monograph focuses on the subclass of those functionals whose local action is a degenerate type of Finsler metric that may vanish in certain directions, allowing for curves with positive Euclidean length but with zero action. For such functionals, criteria are developed under which there exists a minimum action curve leading from one given set to another. Then the properties of this curve are studied, and the non-existence of minimizers is established in some settings. Applied to a geometric reformulation of the quasipotential of Wentzell-Freidlin theory (a subfield of large deviation theory), these results can yield the existence and properties of maximum likelihood transition curves between two metastable states in a stochastic process with small noise. The book assumes only standard knowledge in graduate-level analysis; all higher-level mathematical concepts are introduced along the way.
This modern translation of Sophus Lie's and Friedrich Engel's “Theorie der Transformationsgruppen I†will allow readers to discover the striking conceptual clarity and remarkably systematic organizational thought of the original German text. Volume I presents a comprehensive introduction to the theory and is mainly directed towards the generalization of ideas drawn from the study of examples. The major part of the present volume offers an extremely clear translation of the lucid original. The first four chapters provide not only a translation, but also a contemporary approach, which will help present day readers to familiarize themselves with the concepts at the heart of the subject. The editor's main objective was to encourage a renewed interest in the detailed classification of Lie algebras in dimensions 1, 2 and 3, and to offer access to Sophus Lie's monumental Galois theory of continuous transformation groups, established at the end of the 19th Century. Lie groups are widespread in mathematics, playing a role in representation theory, algebraic geometry, Galois theory, the theory of partial differential equations and also in physics, for example in general relativity. This volume is of interest to researchers in Lie theory and exterior differential systems and also to historians of mathematics. The prerequisites are a basic knowledge of differential calculus, ordinary differential equations and differential geometry.
This book presents established and new approaches to perform calculations of electrostatic interactions at the nanoscale, with particular focus on molecular biology applications. It is based on the proceedings of the Computational Electrostatics for Biological Applications international meeting, which brought together researchers in computational disciplines to discuss and explore diverse methods to improve electrostatic calculations. Fostering an interdisciplinary approach to the description of complex physical and biological problems, this book encompasses contributions originating in the fields of geometry processing, shape modeling, applied mathematics, and computational biology and chemistry. The main topics covered are theoretical and numerical aspects of the solution of the Poisson-Boltzmann equation, surveys and comparison among geometric approaches to the modelling of molecular surfaces and related discretization and computational issues. It also includes a number of contributions addressing applications in biology, biophysics and nanotechnology. The book is primarily intended as a reference for researchers in the computational molecular biology and chemistry fields. As such, it also aims at becoming a key source of information for a wide range of scientists who need to know how modeling and computing at the molecular level may influence the design and interpretation of their experiments.
This book gives an introduction to the field of Incidence Geometry by discussing the basic families of point-line geometries and introducing some of the mathematical techniques that are essential for their study. The families of geometries covered in this book include among others the generalized polygons, near polygons, polar spaces, dual polar spaces and designs. Also the various relationships between these geometries are investigated. Ovals and ovoids of projective spaces are studied and some applications to particular geometries will be given. A separate chapter introduces the necessary mathematical tools and techniques from graph theory. This chapter itself can be regarded as a self-contained introduction to strongly regular and distance-regular graphs. This book is essentially self-contained, only assuming the knowledge of basic notions from (linear) algebra and projective and affine geometry. Almost all theorems are accompanied with proofs and a list of exercises with full solutions is given at the end of the book. This book is aimed at graduate students and researchers in the fields of combinatorics and incidence geometry.
This book summarizes research carried out in workshops of the SAGA project, an Initial Training Network exploring the interplay of Shapes, Algebra, Geometry and Algorithms. Written by a combination of young and experienced researchers, the book introduces new ideas in an established context. Among the central topics are approximate and sparse implicitization and surface parametrization; algebraic tools for geometric computing; algebraic geometry for computer aided design applications and problems with industrial applications. Readers will encounter new methods for the (approximate) transition between the implicit and parametric representation; new algebraic tools for geometric computing; new applications of isogeometric analysis and will gain insight into the emerging research field situated between algebraic geometry and computer aided geometric design.
This first complete English language edition of Euclides vindicatus presents a corrected and revised edition of the classical English translation of Saccheri's text by G.B. Halsted. It is complemented with a historical introduction on the geometrical environment of the time and a detailed commentary that helps to understand the aims and subtleties of the work. Euclides vindicatus, written by the Jesuit mathematician Gerolamo Saccheri, was published in Milan in 1733. In it, Saccheri attempted to reform elementary geometry in two important directions: a demonstration of the famous Parallel Postulate and the theory of proportions. Both topics were of pivotal importance in the mathematics of the time. In particular, the Parallel Postulate had escaped demonstration since the first attempts at it in the Classical Age, and several books on the topic were published in the Early Modern Age. At the same time, the theory of proportion was the most important mathematical tool of the Galilean School in its pursuit of the mathematization of nature. Saccheri's attempt to prove the Parallel Postulate is today considered the most important breakthrough in geometry in the 18th century, as he was able to develop for hundreds of pages and dozens of theorems a system in geometry that denied the truth of the postulate (in the attempt to find a contradiction). This can be regarded as the first system of non-Euclidean geometry. Its later developments by Lambert, Bolyai, Lobachevsky and Gauss eventually opened the way to contemporary geometry. Occupying a unique position in the literature of mathematical history, Euclid Vindicated from Every Blemish will be of high interest to historians of mathematics as well as historians of philosophy interested in the development of non-Euclidean geometries.
Alfred Robb (1873-1936) was a British physicist who worked extensively in the area of special relativity. Originally published in 1936, this book essentially formed a second edition to Robb's A Theory of Time and Space (1914). The alteration in the title was made since it was thought the word 'geometry' better reflected the contents of the text. A considerable amount of fresh material was introduced for the second edition, with the introduction being rewritten and extended, whilst the proofs of a number of theorems were curtailed and simplified. This book will be of value to anyone with an interest in special relativity and the history of science.
At the heart of this monograph is the Brunn-Minkowski theory, which can be used to great effect in studying such ideas as volume and surface area and their generalizations. In particular, the notions of mixed volume and mixed area measure arise naturally and the fundamental inequalities that are satisfied by mixed volumes are considered here in detail. The author presents a comprehensive introduction to convex bodies, including full proofs for some deeper theorems. The book provides hints and pointers to connections with other fields and an exhaustive reference list. This second edition has been considerably expanded to reflect the rapid developments of the past two decades. It includes new chapters on valuations on convex bodies, on extensions like the Lp Brunn-Minkowski theory, and on affine constructions and inequalities. There are also many supplements and updates to the original chapters, and a substantial expansion of chapter notes and references.
The Mordell conjecture (Faltings's theorem) is one of the most important achievements in Diophantine geometry, stating that an algebraic curve of genus at least two has only finitely many rational points. This book provides a self-contained and detailed proof of the Mordell conjecture following the papers of Bombieri and Vojta. Also acting as a concise introduction to Diophantine geometry, the text starts from basics of algebraic number theory, touches on several important theorems and techniques (including the theory of heights, the Mordell-Weil theorem, Siegel's lemma and Roth's lemma) from Diophantine geometry, and culminates in the proof of the Mordell conjecture. Based on the authors' own teaching experience, it will be of great value to advanced undergraduate and graduate students in algebraic geometry and number theory, as well as researchers interested in Diophantine geometry as a whole.
Leonid Ryvkin gives a motivated and self-sustained introduction to n-plectic geometry with a special focus on symmetries. The relevant algebraic structures from scratch are developed. The author generalizes known symplectic notions, notably observables and symmetries, to the n-plectic case, culminating in solving the existence question for co-moment maps for general pre-n-plectic manifolds. Finally partial results scattered along the literature are derived from our general result. |
You may like...
Animal Encyclopedia - 2,500 Animals with…
Angela Modany, National Geographic Kids
Hardcover
3D Imaging for Safety and Security
Andreas Koschan, Marc Pollefeys, …
Hardcover
R1,455
Discovery Miles 14 550
Applications of Computer Algebra…
Ilias S. Kotsireas, Edgar Martinez-Moro
Hardcover
90 Rules For Entrepreneurs - Your Guide…
Marnus Broodryk
Paperback
(4)
|