![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Geometry > General
One service mathematics has rendered the 'Eot moi, ..., si j'avait JU comment en revenir. human race. h has put common sense back je n'y serais point aUe: ' Jules Verne where it belongs, 011 the topmost shelf nen to the dusty canister labeUed 'discarded non- The series is divergent; therefore we may be sense'. able to do something with it. Eric T. Bell O. H es viside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other pans and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series."
This book deals with the study of convex functions and of their behavior from the point of view of stability with respect to perturbations. Convex functions are considered from the modern point of view that underlines the geometrical aspect: thus a function is defined as convex whenever its graph is a convex set. A primary goal of this book is to study the problems of stability and well-posedness, in the convex case. Stability means that the basic parameters of a minimum problem do not vary much if we slightly change the initial data. On the other hand, well-posedness means that points with values close to the value of the problem must be close to actual solutions. In studying this, one is naturally led to consider perturbations of functions and of sets. This approach fits perfectly with the idea of regarding functions as sets. Thus the second part of the book starts with a short, yet rather complete, overview of the so-called hypertopologies, i.e. topologies in the closed subsets of a metric space. While there exist numerous classic texts on the issue of stability, there only exists one book on hypertopologies [Beer 1993]. The current book differs from Beera (TM)s in that it contains a much more condensed explication of hypertopologies and is intended to help those not familiar with hypertopologies learn how to use them in the context of optimization problems.
Geometry is both elegantly simple and infinitely profound. Many professionals find they need to be able to draw geometric shapes accurately, and this unique book shows them how. It provides step-by-step instructions for constructing two-dimensional geometric shapes, which can be readily followed by a beginner, or used as an invaluable source book by students and professionals.
This volume presents the beautiful memoirs of Euler, Lagrange and Lambert on geography, translated into English and put into perspective through explanatory and historical essays as well as commentaries and mathematical notes. These works had a major impact on the development of the differential geometry of surfaces and they deserve to be studied, not only as historical documents, but most of all as a rich source of ideas.
Carl Ludwig Siegel gave a course of lectures on the Geometry of Numbers at New York University during the academic year 1945-46, when there were hardly any books on the subject other than Minkowski's original one. This volume stems from Siegel's requirements of accuracy in detail, both in the text and in the illustrations, but involving no changes in the structure and style of the lectures as originally delivered. This book is an enticing introduction to Minkowski's great work. It also reveals the workings of a remarkable mind, such as Siegel's with its precision and power and aesthetic charm. It is of interest to the aspiring as well as the established mathematician, with its unique blend of arithmetic, algebra, geometry, and analysis, and its easy readability.
Topology-based methods are of increasing importance in the analysis and visualization of dataset from a wide variety of scientific domains such as biology, physics, engineering, and medicine. Current challenges of topology-based techniques include the management of time-dependent data, the representation large and complex datasets, the characterization of noise and uncertainty, the effective integration of numerical methods with robust combinatorial algorithms, etc. (see also below for a list of selected issues). While there is an increasing number of high-quality publications in this field, many fundamental questions remain unsolved. New focused efforts are needed in a variety of techniques ranging from the theoretical foundations of topological models, algorithmic issues related to the representation power of computer-based implementations as well as their computational efficiency, user interfaces for presentation of quantitative topological information, and the development of new techniques for systematic mapping of science problems in topological constructs that can be solved computationally. In this forum the editors have brought together the most prominent and best recognized researchers in the field of topology-based data analysis and visualization for a joint discussion and scientific exchange of the latest results in the field. The 2009 workshop in Snowbird, Utah, follows the two successful workshops in 2005 (Budmerice, Slovakia) and 2007 (Leipzig, Germany).
This is the second of three volumes that, together, give an exposition of the mathematics of grades 9-12 that is simultaneously mathematically correct and grade-level appropriate. The volumes are consistent with CCSSM (Common Core State Standards for Mathematics) and aim at presenting the mathematics of K-12 as a totally transparent subject. The first part of this volume is devoted to the study of standard algebra topics: quadratic functions, graphs of equations of degree 2 in two variables, polynomials, exponentials and logarithms, complex numbers and the fundamental theorem of algebra, and the binomial theorem. Having translations and the concept of similarity at our disposal enables us to clarify the study of quadratic functions by concentrating on their graphs, the same way the study of linear functions is greatly clarified by knowing that their graphs are lines. We also introduce the concept of formal algebra in the study of polynomials with complex coefficients. The last three chapters in this volume complete the systematic exposition of high school geometry that is consistent with CCSSM. These chapters treat the geometry of the triangle and the circle, ruler and compass constructions, and a general discussion of axiomatic systems, including non-Euclidean geometry and the celebrated work of Hilbert on the foundations. This book should be useful for current and future teachers of K-12 mathematics, as well as for some high school students and for education professionals.
Inequalities continue to play an essential role in mathematics. The subject is per haps the last field that is comprehended and used by mathematicians working in all the areas of the discipline of mathematics. Since the seminal work Inequalities (1934) of Hardy, Littlewood and P6lya mathematicians have laboured to extend and sharpen the earlier classical inequalities. New inequalities are discovered ev ery year, some for their intrinsic interest whilst others flow from results obtained in various branches of mathematics. So extensive are these developments that a new mathematical periodical devoted exclusively to inequalities will soon appear; this is the Journal of Inequalities and Applications, to be edited by R. P. Agar wal. Nowadays it is difficult to follow all these developments and because of lack of communication between different groups of specialists many results are often rediscovered several times. Surveys of the present state of the art are therefore in dispensable not only to mathematicians but to the scientific community at large. The study of inequalities reflects the many and various aspects of mathemat ics. There is on the one hand the systematic search for the basic principles and the study of inequalities for their own sake. On the other hand the subject is a source of ingenious ideas and methods that give rise to seemingly elementary but nevertheless serious and challenging problems. There are many applications in a wide variety of fields from mathematical physics to biology and economics."
This book presents a geometric theory of complex analytic integrals representing hypergeometric functions of several variables. Starting from an integrand which is a product of powers of polynomials, integrals are explained, in an open affine space, as a pair of twisted de Rham cohomology and its dual over the coefficients of local system. It is shown that hypergeometric integrals generally satisfy a holonomic system of linear differential equations with respect to the coefficients of polynomials and also satisfy a holonomic system of linear difference equations with respect to the exponents. These are deduced from Grothendieck-Deligne 's rational de Rham cohomology on the one hand, and by multidimensional extension of Birkhoff 's classical theory on analytic difference equations on the other.
This book introduces the reader to the basic principles of functional analysis theory that are close to nonlinear analysis and topology. The presentation is self-contained, including many folklore results, and the proofs are accessible to students with the usual background in real analysis and topology. Several results are published here for the first time in a monograph. The text can be used in graduate courses or for independent study. It includes a large number of exercises of different levels of difficulty, accompanied by hints. The book is also directed to young researchers in functional analysis and can serve as a reference book, to areas of Banach space.
This volume aims to acknowledge J. E. Marsden's influence as a teacher, propagator of new ideas, and mentor of young talent. It presents both survey articles and research articles in the fields that represent the main themes of his work, including elesticity and analysis, fluid mechanics, dynamical systems theory, geometric mechanics, geometric control theory, and relativity and quantum mechanics. The common thread throughout is the use of geometric methods that serve to unify diverse disciplines and bring a wide variety of scientists and mathematicians together in a way that enhances dialogue and encourages cooperation. This book may serve as a guide to rapidly evolving areas as well as a resource both for students who want to work in one of these fields and practitioners who seek a broader view.
Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence of interest in the modern as well as the classical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: Texts in Applied Mathematics ( TAM). The development of new courses is a natural consequence of a high level of excitement on the research frontier as newer techniques, such as numerical and symbolic computer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied Mathematical Sciences (AMS) series, which will focus on advanced textbooks and research level monographs. About the Authors Daniel Kaplan specializes in the analysis of data using techniques motivated by nonlinear dynamics. His primary interest is in the interpretation of irregular physiological rhythms, but the methods he has developed have been used in geo physics, economics, marine ecology, and other fields. He joined McGill in 1991, after receiving his Ph.D from Harvard University and working at MIT. His un dergraduate studies were completed at Swarthmore College. He has worked with several instrumentation companies to develop novel types of medical monitors."
Combining concepts from topology and algorithms, this book delivers what its title promises: an introduction to the field of computational topology. Starting with motivating problems in both mathematics and computer science and building up from classic topics in geometric and algebraic topology, the third part of the text advances to persistent homology. This point of view is critically important in turning a mostly theoretical field of mathematics into one that is relevant to a multitude of disciplines in the sciences and engineering. The main approach is the discovery of topology through algorithms. The book is ideal for teaching a graduate or advanced undergraduate course in computational topology, as it develops all the background of both the mathematical and algorithmic aspects of the subject from first principles. Thus the text could serve equally well in a course taught in a mathematics department or computer science department.
. E C, 0 < 1>'1 < 1, and n E Z, n ~ 2. Let~.>. be the O-dimensional Lie n group generated by the transformation z ~ >.z, z E C - {a}. Then (cf.
Coding, Shaping, Making combines inspiration from architecture, mathematics, biology, chemistry, physics and computation to look towards the future of architecture, design and art. It presents ongoing experiments in the search for fundamental principles of form and form-making in nature so that we can better inform our own built environment. In the coming decades, matter will become encoded with shape information so that it shapes itself, as happens in biology. Physical objects, shaped by forces as well, will begin to design themselves based on information encoded in matter they are made of. This knowledge will be scaled and trickled up to architecture. Consequently, architecture will begin to design itself and the role of the architect will need redefining. This heavily illustrated book highlights Haresh Lalvani's efforts towards this speculative future through experiments in form and form-making, including his work in developing a new approach to shape-coding, exploring higher-dimensional geometry for designing physical structures and organizing form in higher-dimensional diagrams. Taking an in-depth look at Lalvani's pioneering experiments of mass customization in industrial products in architecture, combined with his idea of a form continuum, this book argues for the need for integration of coding, shaping and making in future technologies into one seamless process. Drawing together decades of research, this book will be a thought-provoking read for architecture professionals and students, especially those interested in the future of the discipline as it relates to mathematics, science, technology and art. It will also interest those in the latter fields for its broader implications.
The book presents a comprehensive exposition of extension results for maps between different geometric objects and of extension-trace results for smooth functions on subsets with no a priori differential structure (Whitney problems). The account covers development of the area from the initial classical works of the first half of the 20th century to the flourishing period of the last decade. Seemingly very specific these problems have been from the very beginning a powerful source of ideas, concepts and methods that essentially influenced and in some cases even transformed considerable areas of analysis. Aside from the material linked by the aforementioned problems the book also is unified by geometric analysis approach used in the proofs of basic results. This requires a variety of geometric tools from convex and combinatorial geometry to geometry of metric space theory to Riemannian and coarse geometry and more. The necessary facts are presented mostly with detailed proofs to make the book accessible to a wide audience.
In many applications of graph theory, graphs are regarded as geometric objects drawn in the plane or in some other surface. The traditional methods of "abstract" graph theory are often incapable of providing satisfactory answers to questions arising in such applications. In the past couple of decades, many powerful new combinatorial and topological techniques have been developed to tackle these problems. Today geometric graph theory is a burgeoning field with many striking results and appealing open questions. This contributed volume contains thirty original survey and research papers on important recent developments in geometric graph theory. The contributions were thoroughly reviewed and written by excellent researchers in this field.
Geometric Modeling and Scientific Visualization are both established disciplines, each with their own series of workshops, conferences and journals. But clearly both disciplines overlap; this observation led to the idea of composing a book on Geometric Modeling for Scientific Visualization.
Designed for a one-semester course at the junior undergraduate level, Transformational Plane Geometry takes a hands-on, interactive approach to teaching plane geometry. The book is self-contained, defining basic concepts from linear and abstract algebra gradually as needed. The text adheres to the National Council of Teachers of Mathematics Principles and Standards for School Mathematics and the Common Core State Standards Initiative Standards for Mathematical Practice. Future teachers will acquire the skills needed to effectively apply these standards in their classrooms. Following Felix Klein's Erlangen Program, the book provides students in pure mathematics and students in teacher training programs with a concrete visual alternative to Euclid's purely axiomatic approach to plane geometry. It enables geometrical visualization in three ways: Key concepts are motivated with exploratory activities using software specifically designed for performing geometrical constructions, such as Geometer's Sketchpad. Each concept is introduced synthetically (without coordinates) and analytically (with coordinates). Exercises include numerous geometric constructions that use a reflecting instrument, such as a MIRA. After reviewing the essential principles of classical Euclidean geometry, the book covers general transformations of the plane with particular attention to translations, rotations, reflections, stretches, and their compositions. The authors apply these transformations to study congruence, similarity, and symmetry of plane figures and to classify the isometries and similarities of the plane.
Fractals for the Classroom breaks new ground as it brings an exciting branch of mathematics into the classroom. The book is a collection of independent chapters on the major concepts related to the science and mathematics of fractals. Written at the mathematical level of an advanced secondary student, Fractals for the Classroom includes many fascinating insights for the classroom teacher and integrates illustrations from a wide variety of applications with an enjoyable text to help bring the concepts alive and make them understandable to the average reader. This book will have a tremendous impact upon teachers, students, and the mathematics education of the general public. With the forthcoming companion materials, including four books on strategic classroom activities and lessons with interactive computer software, this package will be unparalleled.
The purpose of this volume and of the other volumes in the same series is to provide a collection of surveys that allows the reader to learn the important aspects of William Thurston's heritage. Thurston's ideas have altered the course of twentieth century mathematics, and they continue to have a significant influence on succeeding generations of mathematicians. The topics covered in the present volume include com-plex hyperbolic Kleinian groups, Moebius structures, hyperbolic ends, cone 3-manifolds, Thurston's norm, surgeries in representation varieties, triangulations, spaces of polygo-nal decompositions and of singular flat structures on surfaces, combination theorems in the theories of Kleinian groups, hyperbolic groups and holomorphic dynamics, the dynamics and iteration of rational maps, automatic groups, and the combinatorics of right-angled Artin groups.
"Knot theory is a fascinating mathematical subject, with multiple links to theoretical physics. This enyclopedia is filled with valuable information on a rich and fascinating subject." - Ed Witten, Recipient of the Fields Medal "I spent a pleasant afternoon perusing the Encyclopedia of Knot Theory. It's a comprehensive compilation of clear introductions to both classical and very modern developments in the field. It will be a terrific resource for the accomplished researcher, and will also be an excellent way to lure students, both graduate and undergraduate, into the field." - Abigail Thompson, Distinguished Professor of Mathematics at University of California, Davis Knot theory has proven to be a fascinating area of mathematical research, dating back about 150 years. Encyclopedia of Knot Theory provides short, interconnected articles on a variety of active areas in knot theory, and includes beautiful pictures, deep mathematical connections, and critical applications. Many of the articles in this book are accessible to undergraduates who are working on research or taking an advanced undergraduate course in knot theory. More advanced articles will be useful to graduate students working on a related thesis topic, to researchers in another area of topology who are interested in current results in knot theory, and to scientists who study the topology and geometry of biopolymers. Features Provides material that is useful and accessible to undergraduates, postgraduates, and full-time researchers Topics discussed provide an excellent catalyst for students to explore meaningful research and gain confidence and commitment to pursuing advanced degrees Edited and contributed by top researchers in the field of knot theory
This book provides a collection of 44 simple computer and physical laboratory experiments, including some for an artist's studio and some for a kitchen, that illustrate the concepts of fractal geometry. In addition to standard topics - iterated function systems (IFS), fractal dimension computation, the Mandelbrot set - we explore data analysis by driven IFS, construction of four-dimensional fractals, basic multifractals, synchronization of chaotic processes, fractal finger paints, cooking fractals, videofeedback, and fractal networks of resistors and oscillators. |
![]() ![]() You may like...
Emerging Applications of Fuzzy Algebraic…
Chiranjibe Jana, Tapan Senapati, …
Hardcover
R8,410
Discovery Miles 84 100
The Data Science Framework - A View from…
Juan J. Cuadrado-Gallego, Yuri Demchenko
Hardcover
R4,578
Discovery Miles 45 780
Cyberspace Security and Defense…
Janusz S. Kowalik, Janusz G orski, …
Hardcover
R3,101
Discovery Miles 31 010
Smart Technologies in Data Science and…
Sanjoy Kumar Saha, Paul S. Pang, …
Hardcover
R5,645
Discovery Miles 56 450
Fuzzy Statistical Decision-Making…
Cengiz Kahraman, OEzgur Kabak
Hardcover
Data Science and Security - Proceedings…
Dharm Singh Jat, Samiksha Shukla, …
Hardcover
R4,392
Discovery Miles 43 920
VLSI-SoC: Design Trends - 28th IFIP WG…
Andrea Calimera, Pierre-Emmanuel Gaillardon, …
Hardcover
R3,667
Discovery Miles 36 670
Fuzzy Logic in Management
Christer Carlsson, Mario Fedrizzi, …
Hardcover
R3,042
Discovery Miles 30 420
|