![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Geometry > General
Modern physics is confronted with a large variety of complex spatial patterns. Although both spatial statisticians and statistical physicists study random geometrical structures, there has been only little interaction between the two up to now because of different traditions and languages. This volume aims to change this situation by presenting in a clear way fundamental concepts of spatial statistics which are of great potential value for condensed matter physics and materials sciences in general, and for porous media, percolation and Gibbs processes in particular. Geometric aspects, in particular ideas of stochastic and integral geometry, play a central role throughout. With nonspecialist researchers and graduate students also in mind, prominent physicists give an excellent introduction here to modern ideas of statistical physics pertinent to this exciting field of research.
This book presents problems and solutions in calculus with curvilinear coordinates. Vector analysis can be performed in different coordinate systems, an optimal system considers the symmetry of the problem in order to reduce calculatory difficulty. The book presents the material in arbitrary orthogonal coordinates, and includes the discussion of parametrization methods as well as topics such as potential theory and integral theorems. The target audience primarily comprises university teachers in engineering mathematics, but the book may also be beneficial for advanced undergraduate and graduate students alike.
The textbook Geometry, published in French by CEDICjFernand Nathan and in English by Springer-Verlag (scheduled for 1985) was very favorably re ceived. Nevertheless, many readers found the text too concise and the exercises at the end of each chapter too difficult, and regretted the absence of any hints for the solution of the exercises. This book is intended to respond, at least in part, to these needs. The length of the textbook (which will be referred to as B] throughout this book) and the volume of the material covered in it preclude any thought of publishing an expanded version, but we considered that it might prove both profitable and amusing to some of our readers to have detailed solutions to some of the exercises in the textbook. At the same time, we planned this book to be independent, at least to a certain extent, from the textbook; thus, we have provided summaries of each of its twenty chapters, condensing in a few pages and under the same titles the most important notions and results, used in the solution of the problems. The statement of the selected problems follows each summary, and they are numbered in order, with a reference to the corresponding place in B]. These references are not meant as indications for the solutions of the problems. In the body of each summary there are frequent references to B], and these can be helpful in elaborating a point which is discussed too cursorily in this book."
C.S. Seshadri turned seventy on the 29th of February, 2002. To mark this occasion, a symposium was held in Chennai, India, where some of his colleagues gave expository talks highlighting Seshadri's contributions to mathematics. This volume includes expanded texts of these talks as well as research and expository papers on geometry and representation theory. It will serve as an excellent reference for researchers and students in these areas.
A First Course in Chaotic Dynamical Systems: Theory and Experiment, Second Edition The long-anticipated revision of this well-liked textbook offers many new additions. In the twenty-five years since the original version of this book was published, much has happened in dynamical systems. Mandelbrot and Julia sets were barely ten years old when the first edition appeared, and most of the research involving these objects then centered around iterations of quadratic functions. This research has expanded to include all sorts of different types of functions, including higher-degree polynomials, rational maps, exponential and trigonometric functions, and many others. Several new sections in this edition are devoted to these topics. The area of dynamical systems covered in A First Course in Chaotic Dynamical Systems: Theory and Experiment, Second Edition is quite accessible to students and also offers a wide variety of interesting open questions for students at the undergraduate level to pursue. The only prerequisite for students is a one-year calculus course (no differential equations required); students will easily be exposed to many interesting areas of current research. This course can also serve as a bridge between the low-level, often non-rigorous calculus courses, and the more demanding higher-level mathematics courses. Features More extensive coverage of fractals, including objects like the Sierpinski carpet and others that appear as Julia sets in the later sections on complex dynamics, as well as an actual chaos "game." More detailed coverage of complex dynamical systems like the quadratic family and the exponential maps. New sections on other complex dynamical systems like rational maps. A number of new and expanded computer experiments for students to perform. About the Author Robert L. Devaney is currently professor of mathematics at Boston University. He received his PhD from the University of California at Berkeley under the direction of Stephen Smale. He taught at Northwestern University and Tufts University before coming to Boston University in 1980. His main area of research is dynamical systems, primarily complex analytic dynamics, but also including more general ideas about chaotic dynamical systems. Lately, he has become intrigued with the incredibly rich topological aspects of dynamics, including such things as indecomposable continua, Sierpinski curves, and Cantor bouquets.
..".A nice feature of the book is] that at various points the authors provide examples, or rather counterexamples, that clearly show what can go wrong...This is a nicely-written book that] studies algebraic differential modules in several variables." --Mathematical Reviews
The work shows the fascination of topology- and geometry-governed properties of self-rolled micro- and nanoarchitectures. The author provides an in-depth representation of the advanced theoretical and numerical models for analyzing key effects, which underlie engineering of transport, superconducting and optical properties of micro- and nanoarchitectures.
These two volumes contain eighteen invited papers by distinguished mathematicians in honor of the eightieth birthday of Israel M. Gelfand, one of the most remarkable mathematicians of our time. Gelfand has played a crucial role in the development of functional analysis during the last half-century. His work and his philosophy have in fact helped shape our understanding of the term 'functional analysis'. The papers in these volumes largely concern areas in which Gelfand has a very strong interest today, including geometric quantum field theory, representation theory, combinatorial structures underlying various 'continuous' constructions, quantum groups and geometry.
In recent years, it has become increasingly clear that there are important connections relating three concepts -- groupoids, inverse semigroups, and operator algebras. There has been a great deal of progress in this area over the last two decades, and this book gives a careful, up-to-date and reasonably extensive account of the subject matter. After an introductory first chapter, the second chapter presents a self-contained account of inverse semigroups, locally compact and r-discrete groupoids, and Lie groupoids. The section on Lie groupoids in chapter 2 contains a detailed discussion of groupoids particularly important in noncommutative geometry, including the holonomy groupoids of a foliated manifold and the tangent groupoid of a manifold. The representation theories of locally compact and r-discrete groupoids are developed in the third chapter, and it is shown that the C*-algebras of r-discrete groupoids are the covariance C*-algebras for inverse semigroup actions on locally compact Hausdorff spaces. A final chapter associates a universal r-discrete groupoid with any inverse semigroup. Six subsequent appendices treat topics related to those covered in the text. The book should appeal to a wide variety of professional mathematicians and graduate students in fields such as operator algebras, analysis on groupoids, semigroup theory, and noncommutative geometry. It will also be of interest to mathematicians interested in tilings and theoretical physicists whose focus is modeling quasicrystals with tilings. An effort has been made to make the book lucid and 'user friendly"; thus it should be accessible to any reader with a basic background in measure theory and functional analysis.
These two volumes contain eighteen invited papers by distinguished mathematicians in honor of the eightieth birthday of Israel M. Gelfand, one of the most remarkable mathematicians of our time. Gelfand has played a crucial role in the development of functional analysis during the last half-century. His work and his philosophy have in fact helped shape our understanding of the term 'functional analysis'. The papers in these volumes largely concern areas in which Gelfand has a very strong interest today, including geometric quantum field theory, representation theory, combinatorial structures underlying various 'continuous' constructions, quantum groups and geometry.
In recent years topology has firmly established itself as an important part of the physicist's mathematical arsenal. Topology has profound relevance to quantum field theory-for example, topological nontrivial solutions of the classical equa tions of motion (solitons and instantons) allow the physicist to leave the frame work of perturbation theory. The significance of topology has increased even further with the development of string theory, which uses very sharp topologi cal methods-both in the study of strings, and in the pursuit of the transition to four-dimensional field theories by means of spontaneous compactification. Im portant applications of topology also occur in other areas of physics: the study of defects in condensed media, of singularities in the excitation spectrum of crystals, of the quantum Hall effect, and so on. Nowadays, a working knowledge of the basic concepts of topology is essential to quantum field theorists; there is no doubt that tomorrow this will also be true for specialists in many other areas of theoretical physics. The amount of topological information used in the physics literature is very large. Most common is homotopy theory. But other subjects also play an important role: homology theory, fibration theory (and characteristic classes in particular), and also branches of mathematics that are not directly a part of topology, but which use topological methods in an essential way: for example, the theory of indices of elliptic operators and the theory of complex manifolds."
This book is based on lectures I have given to undergraduate and graduate audiences at Oxford and elsewhere over the years. My aim has been to provide an outline of both the topological theory and the uniform theory, with an emphasis on the relation between the two. Although I hope that the prospec tive specialist may find it useful as an introduction it is the non-specialist I have had more in mind in selecting the contents. Thus I have tended to avoid the ingenious examples and counterexamples which often occupy much ofthe space in books on general topology, and I have tried to keep the number of definitions down to the essential minimum. There are no particular pre requisites but I have worked on the assumption that a potential reader will already have had some experience of working with sets and functions and will also be familiar with the basic concepts of algebra and analysis. There are a number of fine books on general topology, some of which I have listed in the Select Bibliography at the end of this volume. Of course I have benefited greatly from this previous work in writing my own account. Undoubtedly the strongest influence is that of Bourbaki's Topologie Generale 2], the definitive treatment of the subject which first appeared over a genera tion ago."
This book deals with the constructive Weierstrassian approach to the theory of function spaces and various applications. The first chapter is devoted to a detailed study of quarkonial (subatomic) decompositions of functions and distributions on euclidean spaces, domains, manifolds and fractals. This approach combines the advantages of atomic and wavelet representations. It paves the way to sharp inequalities and embeddings in function spaces, spectral theory of fractal elliptic operators, and a regularity theory of some semi-linear equations. The book is self-contained, although some parts may be considered as a continuation of the author's book "Fractals and Spectra" (MMA 91). It is directed to mathematicians and (theoretical) physicists interested in the topics indicated and, in particular, how they are interrelated.
This volume is a collection of research surveys on the Distance Geometry Problem (DGP) and its applications. It will be divided into three parts: Theory, Methods and Applications. Each part will contain at least one survey and several research papers. The first part, Theory, will deal with theoretical aspects of the DGP, including a new class of problems and the study of its complexities as well as the relation between DGP and other related topics, such as: distance matrix theory, Euclidean distance matrix completion problem, multispherical structure of distance matrices, distance geometry and geometric algebra, algebraic distance geometry theory, visualization of K-dimensional structures in the plane, graph rigidity, and theory of discretizable DGP: symmetry and complexity. The second part, Methods, will discuss mathematical and computational properties of methods developed to the problems considered in the first chapter including continuous methods (based on Gaussian and hyperbolic smoothing, difference of convex functions, semidefinite programming, branch-and-bound), discrete methods (based on branch-and-prune, geometric build-up, graph rigidity), and also heuristics methods (based on simulated annealing, genetic algorithms, tabu search, variable neighborhood search). Applications will comprise the third part and will consider applications of DGP to NMR structure calculation, rational drug design, molecular dynamics simulations, graph drawing and sensor network localization. This volume will be the first edited book on distance geometry and applications. The editors are in correspondence with the major contributors to the field of distance geometry, including important research centers in molecular biology such as Institut Pasteur in Paris.
This volume is dedicated to the memory of Shoshichi Kobayashi, and gathers contributions from distinguished researchers working on topics close to his research areas. The book is organized into three parts, with the first part presenting an overview of Professor Shoshichi Kobayashi's career. This is followed by two expository course lectures (the second part) on recent topics in extremal Kahler metrics and value distribution theory, which will be helpful for graduate students in mathematics interested in new topics in complex geometry and complex analysis. Lastly, the third part of the volume collects authoritative research papers on differential geometry and complex analysis. Professor Shoshichi Kobayashi was a recognized international leader in the areas of differential and complex geometry. He contributed crucial ideas that are still considered fundamental in these fields. The book will be of interest to researchers in the fields of differential geometry, complex geometry, and several complex variables geometry, as well as to graduate students in mathematics.
Smooth Manifolds and Observables is about the differential calculus, smooth manifolds, and commutative algebra. While these theories arose at different times and under completely different circumstances, this book demonstrates how they constitute a unified whole. The motivation behind this synthesis is the mathematical formalization of the process of observation in classical physics. The main objective of this book is to explain how differential calculus is a natural part of commutative algebra. This is achieved by studying the corresponding algebras of smooth functions that result in a general construction of the differential calculus on various categories of modules over the given commutative algebra. It is shown in detail that the ordinary differential calculus and differential geometry on smooth manifolds turns out to be precisely the particular case that corresponds to the category of geometric modules over smooth algebras. This approach opens the way to numerous applications, ranging from delicate questions of algebraic geometry to the theory of elementary particles. This unique textbook contains a large number of exercises and is intended for advanced undergraduates, graduate students, and research mathematicians and physicists.
This book gives a unified treatment of a variety of mathematical systems generating densities, ranging from one-dimensional discrete time transformations through continuous time systems described by integro-partial-differential equations. Examples have been drawn from a variety of the sciences to illustrate the utility of the techniques presented. This material was organized and written to be accessible to scientists with knowledge of advanced calculus and differential equations. In various concepts from measure theory, ergodic theory, the geometry of manifolds, partial differential equations, probability theory and Markov processes, and chastic integrals and differential equations are introduced. The past few years have witnessed an explosive growth in interest in physical, biological, and economic systems that could be profitably studied using densities. Due to the general inaccessibility of the mathematical literature to the non-mathematician, there has been little diffusion of the concepts and techniques from ergodic theory into the study of these "chaotic" systems. This book intends to bridge that gap.
The first part of this book is a text for graduate courses in
topology. In chapters 1 - 5, part of the basic material of plane
topology, combinatorial topology, dimension theory and ANR theory
is presented. For a student who will go on in geometric or
algebraic topology this material is a prerequisite for later work.
Chapter 6 is an introduction to infinite-dimensional topology; it
uses for the most part geometric methods, and gets to spectacular
results fairly quickly. The second part of this book, chapters 7
& 8, is part of geometric topology and is meant for the more
advanced mathematician interested in manifolds.
This volume is an offspring of the special semester "Ergodic Theory, Geometric Rigidity and Number Theory" held at the Isaac Newton Institute for Mathematical Sciences in Cambridge, UK, from January until July, 2000. Some of the major recent developments in rigidity theory, geometric group theory, flows on homogeneous spaces and Teichmüller spaces, quasi-conformal geometry, negatively curved groups and spaces, Diophantine approximation, and bounded cohomology are presented here. The authors have given special consideration to making the papers accessible to graduate students, with most of the contributions starting at an introductory level and building up to presenting topics at the forefront in this active field of research. The volume contains surveys and original unpublished results as well, and is an invaluable source also for the experienced researcher.
Derived from the author's course on the subject, Elements of Differential Topology explores the vast and elegant theories in topology developed by Morse, Thom, Smale, Whitney, Milnor, and others. It begins with differential and integral calculus, leads you through the intricacies of manifold theory, and concludes with discussions on algebraic topology, algebraic/differential geometry, and Lie groups. The first two chapters review differential and integral calculus of several variables and present fundamental results that are used throughout the text. The next few chapters focus on smooth manifolds as submanifolds in a Euclidean space, the algebraic machinery of differential forms necessary for studying integration on manifolds, abstract smooth manifolds, and the foundation for homotopical aspects of manifolds. The author then discusses a central theme of the book: intersection theory. He also covers Morse functions and the basics of Lie groups, which provide a rich source of examples of manifolds. Exercises are included in each chapter, with solutions and hints at the back of the book. A sound introduction to the theory of smooth manifolds, this text ensures a smooth transition from calculus-level mathematical maturity to the level required to understand abstract manifolds and topology. It contains all standard results, such as Whitney embedding theorems and the Borsuk-Ulam theorem, as well as several equivalent definitions of the Euler characteristic.
In recent years topology has firmly established itself as an important part of the physicist's mathematical arsenal. It has many applications, first of all in quantum field theory, but increasingly also in other areas of physics. The main focus of this book is on the results of quantum field theory that are obtained by topological methods. Some aspects of the theory of condensed matter are also discussed. Part I is an introduction to quantum field theory: it discusses the basic Lagrangians used in the theory of elementary particles. Part II is devoted to the applications of topology to quantum field theory. Part III covers the necessary mathematical background in summary form. The book is aimed at physicists interested in applications of topology to physics and at mathematicians wishing to familiarize themselves with quantum field theory and the mathematical methods used in this field. It is accessible to graduate students in physics and mathematics.
Up until recently, Riemannian geometry and basic topology were not included, even by departments or faculties of mathematics, as compulsory subjects in a university-level mathematical education. The standard courses in the classical differential geometry of curves and surfaces which were given instead (and still are given in some places) have come gradually to be viewed as anachronisms. However, there has been hitherto no unanimous agreement as to exactly how such courses should be brought up to date, that is to say, which parts of modern geometry should be regarded as absolutely essential to a modern mathematical education, and what might be the appropriate level of abstractness of their exposition. The task of designing a modernized course in geometry was begun in 1971 in the mechanics division of the Faculty of Mechanics and Mathematics of Moscow State University. The subject-matter and level of abstractness of its exposition were dictated by the view that, in addition to the geometry of curves and surfaces, the following topics are certainly useful in the various areas of application of mathematics (especially in elasticity and relativity, to name but two), and are therefore essential: the theory of tensors (including covariant differentiation of them); Riemannian curvature; geodesics and the calculus of variations (including the conservation laws and Hamiltonian formalism); the particular case of skew-symmetric tensors (i. e.
The process of breaking up a physical domain into smaller sub-domains, known as meshing, facilitates the numerical solution of partial differential equations used to simulate physical systems. In an updated and expanded Second Edition, this monograph gives a detailed treatment based on the numerical solution of inverted Beltramian and diffusion equations with respect to monitor metrics for generating both structured and unstructured grids in domains and on surfaces. |
![]() ![]() You may like...
Immanent Reasoning or Equality in Action…
Shahid Rahman, Zoe McConaughey, …
Hardcover
R1,569
Discovery Miles 15 690
Logical Methods - In Honor of Anil…
John N. Crossley, Jeffrey B. Remmel, …
Hardcover
R4,573
Discovery Miles 45 730
Current Trends in Transformation Groups
Anthony Bak, Masaharu Morimoto, …
Hardcover
R1,672
Discovery Miles 16 720
Complexity and Real Computation
Lenore Blum, Felipe Cucker, …
Hardcover
R2,625
Discovery Miles 26 250
Proceedings Of The Sixth Asian Logic…
Chitat Chong, Mariko Yasugi, …
Paperback
R2,677
Discovery Miles 26 770
DNA Computing - New Computing Paradigms
Gheorghe Paun, Grzegorz Rozenberg, …
Hardcover
R2,784
Discovery Miles 27 840
|