|
|
Books > Science & Mathematics > Mathematics > Geometry > General
The book presents a comprehensive overview of various aspects of
three-dimensional geometry that can be experienced on a daily
basis. By covering the wide range of topics - from the psychology
of spatial perception to the principles of 3D modelling and
printing, from the invention of perspective by Renaissance artists
to the art of Origami, from polyhedral shapes to the theory of
knots, from patterns in space to the problem of optimal packing,
and from the problems of cartography to the geometry of solar and
lunar eclipses - this book provides deep insight into phenomena
related to the geometry of space and exposes incredible nuances
that can enrich our lives.The book is aimed at the general
readership and provides more than 420 color illustrations that
support the explanations and replace formal mathematical arguments
with clear graphical representations.
The book presents a comprehensive overview of various aspects of
three-dimensional geometry that can be experienced on a daily
basis. By covering the wide range of topics - from the psychology
of spatial perception to the principles of 3D modelling and
printing, from the invention of perspective by Renaissance artists
to the art of Origami, from polyhedral shapes to the theory of
knots, from patterns in space to the problem of optimal packing,
and from the problems of cartography to the geometry of solar and
lunar eclipses - this book provides deep insight into phenomena
related to the geometry of space and exposes incredible nuances
that can enrich our lives.The book is aimed at the general
readership and provides more than 420 color illustrations that
support the explanations and replace formal mathematical arguments
with clear graphical representations.
Flatland is a fascinating nineteenth century work - an utterly
unique combination of multi-plane geometry, social satire and
whimsy. Although its original publication went largely unnoticed,
the discoveries of later physicists brought it new recognition and
respect, and its popularity since has justly never waned. It
remains a charming and entertaining read, and a brilliant
introduction to the concept of dimensions beyond those we can
perceive. This is a reworking of the expanded 2nd edition of 1884,
with particularly large, clear text, and all the original author's
illustrations.
Hermitian symmetric spaces are an important class of manifolds that
can be studied with methods from Kahler geometry and Lie theory.
This work gives an introduction to Hermitian symmetric spaces and
their submanifolds, and presents classifi cation results for real
hypersurfaces in these spaces, focusing on results obtained by
Jurgen Berndt and Young Jin Suh in the last 20 years.
The innovative use of sliceforms to explore the properties of
surfaces is produced in a systematic way, providing the tools to
build surfaces from paper to explore their mathematics. The
extensive commentary explains the mathematics behind particular
surfaces: an exercise in practical geometry that will stimulate
ideas for the student and the enthusiast, as well as having
practical applications in engineering and architecture.
Since Benoit Mandelbrot's pioneering work in the late 1970s, scores
of research articles and books have been published on the topic of
fractals. Despite the volume of literature in the field, the
general level of theoretical understanding has remained low; most
work is aimed either at too mainstream an audience to achieve any
depth or at too specialized a community to achieve widespread use.
Written by celebrated mathematician and educator A.A. Kirillov, A
Tale of Two Fractals is intended to help bridge this gap, providing
an original treatment of fractals that is at once accessible to
beginners and sufficiently rigorous for serious mathematicians. The
work is designed to give young, non-specialist mathematicians a
solid foundation in the theory of fractals, and, in the process, to
equip them with exposure to a variety of geometric, analytical, and
algebraic tools with applications across other areas.
This book presents material in two parts. Part one provides an
introduction to crossed modules of groups, Lie algebras and
associative algebras with fully written out proofs and is suitable
for graduate students interested in homological algebra. In part
two, more advanced and less standard topics such as crossed modules
of Hopf algebra, Lie groups, and racks are discussed as well as
recent developments and research on crossed modules.
This book consists of three volumes. The first volume contains
introductory accounts of topological dynamical systems, fi
nite-state symbolic dynamics, distance expanding maps, and ergodic
theory of metric dynamical systems acting on probability measure
spaces, including metric entropy theory of Kolmogorov and Sinai.
More advanced topics comprise infi nite ergodic theory, general
thermodynamic formalism, topological entropy and pressure.
Thermodynamic formalism of distance expanding maps and
countable-alphabet subshifts of fi nite type, graph directed Markov
systems, conformal expanding repellers, and Lasota-Yorke maps are
treated in the second volume, which also contains a chapter on
fractal geometry and its applications to conformal systems.
Multifractal analysis and real analyticity of pressure are also
covered. The third volume is devoted to the study of dynamics,
ergodic theory, thermodynamic formalism and fractal geometry of
rational functions of the Riemann sphere.
The book contains a detailed treatment of thermodynamic formalism
on general compact metrizable spaces. Topological pressure,
topological entropy, variational principle, and equilibrium states
are presented in detail. Abstract ergodic theory is also given a
significant attention. Ergodic theorems, ergodicity, and
Kolmogorov-Sinai metric entropy are fully explored. Furthermore,
the book gives the reader an opportunity to find rigorous
presentation of thermodynamic formalism for distance expanding maps
and, in particular, subshifts of finite type over a finite
alphabet. It also provides a fairly complete treatment of subshifts
of finite type over a countable alphabet. Transfer operators, Gibbs
states and equilibrium states are, in this context, introduced and
dealt with. Their relations are explored. All of this is applied to
fractal geometry centered around various versions of Bowen's
formula in the context of expanding conformal repellors, limit sets
of conformal iterated function systems and conformal graph directed
Markov systems. A unique introduction to iteration of rational
functions is given with emphasize on various phenomena caused by
rationally indifferent periodic points. Also, a fairly full account
of the classicaltheory of Shub's expanding endomorphisms is given;
it does not have a book presentation in English language
mathematical literature.
"Presents a summary of selected mathematics topics from
college/university level mathematics courses. Fundamental
principles are reviewed and presented by way of examples, figures,
tables and diagrams. It condenses and presents under one cover
basic concepts from several different applied mathematics
topics"--P. [4] of cover.
Advanced Topics in Linear Algebra presents, in an engaging style,
novel topics linked through the Weyr matrix canonical form, a
largely unknown cousin of the Jordan canonical form discovered by
Eduard Weyr in 1885. The book also develops much linear algebra
unconnected to canonical forms, that has not previously appeared in
book form. It presents common applications of Weyr form, including
matrix commutativity problems, approximate simultaneous
diagonalization, and algebraic geometry, with the latter two having
topical connections to phylogenetic invariants in biomathematics
and multivariate interpolation. The Weyr form clearly outperforms
the Jordan form in many situations, particularly where two or more
commuting matrices are involved, due to the block upper triangular
form a Weyr matrix forces on any commuting matrix. In this book,
the authors develop the Weyr form from scratch, and include an
algorithm for computing it. The Weyr form is also derived
ring-theoretically in an entirely different way to the classical
derivation of the Jordan form. A fascinating duality exists between
the two forms that allows one to flip back and forth and exploit
the combined powers of each. The book weaves together ideas from
various mathematical disciplines, demonstrating dramatically the
variety and unity of mathematics. Though the book's main focus is
linear algebra, it also draws upon ideas from commutative and
noncommutative ring theory, module theory, field theory, topology,
and algebraic geometry. Advanced Topics in Linear Algebra offers
self-contained accounts of the non-trivial results used from
outside linear algebra, and lots of worked examples, thereby making
it accessible to graduate students. Indeed, the scope of the book
makes it an appealing graduate text, either as a reference or for
an appropriately designed one or two semester course. A number of
the authors' previously unpublished results appear as well.
|
|