![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Geometry > General
The present volume contains invited talks of 11th biennial conference on "Emerging Mathematical Methods, Models and Algorithms for Science and Technology". The main message of the book is that mathematics has a great potential to analyse and understand the challenging problems of nanotechnology, biotechnology, medical science, oil industry and financial technology. The book highlights all the features and main theme discussed in the conference. All contributing authors are eminent academicians, scientists, researchers and scholars in their respective fields, hailing from around the world.
Issues of matching and searching on elementary discrete structures arise pervasively in computer science and many of its applications, and their relevance is expected to grow as information is amassed and shared at an accelerating pace. Several algorithms were discovered as a result of these needs, which in turn created the subfield of Pattern Matching. This book provides an overview of the current state of Pattern Matching as seen by specialists who have devoted years of study to the field. It covers most of the basic principles and presents material advanced enough to faithfully portray the current frontier of research. As a result of these recent advances, this is the right time for a book that brings together information relevant to both graduate students and specialists in need of an in-depth reference.
This book proposes new notions of coherent geometric structure. Fractal patterns have emerged in many contexts, but what exactly is a "pattern" and what is not? How can one make precise the structures lying within objects and the relationships between them? The foundations laid herein provide a fresh approach to a familiar field. From this emerges a wide range of open problems, large and small, and a variety of examples with diverse connections to other parts of mathematics. One of the main features of the present text is that the basic framework is completely new. This makes it easier for people to get into the field. There are many open problems, with plenty of opportunities that are likely to be close at hand, particularly as concerns the exploration of examples. On the other hand the general framework is quite broad and provides the possibility for future discoveries of some magnitude. Fractual geometries can arise in many different ways mathematically, but there is not so much general language for making comparisons. This book provides some tools for doing this, and a place where researchers in different areas can find common ground and basic information.
This book contains a collection of papers presented at the 2nd Tbilisi Salerno Workshop on Mathematical Modeling in March 2015. The focus is on applications of mathematics in physics, electromagnetics, biochemistry and botany, and covers such topics as multimodal logic, fractional calculus, special functions, Fourier-like solutions for PDE's, Rvachev-functions and linear dynamical systems. Special chapters focus on recent uniform analytic descriptions of natural and abstract shapes using the Gielis Formula. The book is intended for a wide audience with interest in application of mathematics to modeling in the natural sciences.
This volume has been divided into two parts: Geometry and Applications. The geometry portion of the book relates primarily to geometric flows, laminations, integral formulae, geometry of vector fields on Lie groups and osculation; the articles in the applications portion concern some particular problems of the theory of dynamical systems, including mathematical problems of liquid flows and a study of cycles for non-dynamical systems. This Work is based on the second international workshop entitled "Geometry and Symbolic Computations," held on May 15-18, 2013 at the University of Haifa and is dedicated to modeling (using symbolic calculations) in differential geometry and its applications in fields such as computer science, tomography and mechanics. It is intended to create a forum for students and researchers in pure and applied geometry to promote discussion of modern state-of-the-art in geometric modeling using symbolic programs such as Maple and Mathematica(r), as well as presentation of new results."
Collecting together contributed lectures and mini-courses, this book details the research presented in a special semester titled "Geometric mechanics - variational and stochastic methods" run in the first half of 2015 at the Centre Interfacultaire Bernoulli (CIB) of the Ecole Polytechnique Federale de Lausanne. The aim of the semester was to develop a common language needed to handle the wide variety of problems and phenomena occurring in stochastic geometric mechanics. It gathered mathematicians and scientists from several different areas of mathematics (from analysis, probability, numerical analysis and statistics, to algebra, geometry, topology, representation theory, and dynamical systems theory) and also areas of mathematical physics, control theory, robotics, and the life sciences, with the aim of developing the new research area in a concentrated joint effort, both from the theoretical and applied points of view. The lectures were given by leading specialists in different areas of mathematics and its applications, building bridges among the various communities involved and working jointly on developing the envisaged new interdisciplinary subject of stochastic geometric mechanics.
A Kleinian group is a discrete subgroup of the isometry group of hyperbolic 3-space, which is also regarded as a subgroup of Moebius transformations in the complex plane. The present book is a comprehensive guide to theories of Kleinian groups from the viewpoints of hyperbolic geometry and complex analysis. After 1960, Ahlfors and Bers were the leading researchers of Kleinian groups and helped it to become an active area of complex analysis as a branch of Teichmuller theory. Later, Thurston brought a revolution to this area with his profound investigation of hyperbolic manifolds, and at the same time complex dynamical approach was strongly developed by Sullivan. This book provides fundamental results and important theorems which are needed for access to the frontiers of the theory from a modern viewpoint.
Gauge Field theory in Natural Geometric Language addresses the need to clarify basic mathematical concepts at the crossroad between gravitation and quantum physics. Selected mathematical and theoretical topics are exposed within a brief, integrated approach that exploits standard and non-standard notions, as well as recent advances, in a natural geometric language in which the role of structure groups can be regarded as secondary even in the treatment of the gauge fields themselves. In proposing an original bridge between physics and mathematics, this text will appeal not only to mathematicians who wish to understand some of the basic ideas involved in quantum particle physics, but also to physicists who are not satisfied with the usual mathematical presentations of their field.
This 3. edition is an introduction to classical knot theory. It contains many figures and some tables of invariants of knots. This comprehensive account is an indispensable reference source for anyone interested in both classical and modern knot theory. Most of the topics considered in the book are developed in detail; only the main properties of fundamental groups and some basic results of combinatorial group theory are assumed to be known.
This book features a selection of articles based on the XXXIV Bialowieza Workshop on Geometric Methods in Physics, 2015. The articles presented are mathematically rigorous, include important physical implications and address the application of geometry in classical and quantum physics. Special attention deserves the session devoted to discussions of Gerard Emch's most important and lasting achievements in mathematical physics. The Bialowieza workshops are among the most important meetings in the field and gather participants from mathematics and physics alike. Despite their long tradition, the Workshops remain at the cutting edge of ongoing research. For the past several years, the Bialowieza Workshop has been followed by a School on Geometry and Physics, where advanced lectures for graduate students and young researchers are presented. The unique atmosphere of the Workshop and School is enhanced by the venue, framed by the natural beauty of the Bialowieza forest in eastern Poland.
later versions. In addition, the CD-ROM contains a complete solutions manual that includes detailed solutions to all the problems in the book. If the reader does not wish to consult these solutions, then a brief list of answers is provided in printed form at the end of the book. Iwouldliketothankmyfamilymembersfortheirhelpandcontinuedsupportwi- out which this book would not have been possible. I would also like to acknowledge the help of the editior at Springer-Verlag (Dr. Thomas Ditzinger) for his assistance in bringing this book out in its present form. Finally, I would like to thank my brother, Nicola, for preparing most of the line drawings in both editions. In this edition, I am providing two email addresses for my readers to contact me (pkattan@tedata. net. jo and pkattan@lsu. edu). The old email address that appeared in the ?rst edition was cancelled in 2004. December 2006 Peter I. Kattan PrefacetotheFirstEdition 3 This is a book for people who love ?nite elements and MATLAB . We will use the popular computer package MATLAB as a matrix calculator for doing ?nite element analysis. Problems will be solved mainly using MATLAB to carry out the tedious and lengthy matrix calculations in addition to some manual manipulations especially when applying the boundary conditions. In particular the steps of the ?nite element method are emphasized in this book. The reader will not ?nd ready-made MATLAB programsforuseasblackboxes. Insteadstep-by-stepsolutionsof?niteelementpr- lems are examined in detail using MATLAB.
Periodic differential equations appear in many contexts such as in the theory of nonlinear oscillators, in celestial mechanics, or in population dynamics with seasonal effects. The most traditional approach to study these equations is based on the introduction of small parameters, but the search of nonlocal results leads to the application of several topological tools. Examples are fixed point theorems, degree theory, or bifurcation theory. These well-known methods are valid for equations of arbitrary dimension and they are mainly employed to prove the existence of periodic solutions. Following the approach initiated by Massera, this book presents some more delicate techniques whose validity is restricted to two dimensions. These typically produce additional dynamical information such as the instability of periodic solutions, the convergence of all solutions to periodic solutions, or connections between the number of harmonic and subharmonic solutions. The qualitative study of periodic planar equations leads naturally to a class of discrete dynamical systems generated by homeomorphisms or embeddings of the plane. To study these maps, Brouwer introduced the notion of a translation arc, somehow mimicking the notion of an orbit in continuous dynamical systems. The study of the properties of these translation arcs is full of intuition and often leads to "non-rigorous proofs". In the book, complete proofs following ideas developed by Brown are presented and the final conclusion is the Arc Translation Lemma, a counterpart of the Poincare-Bendixson theorem for discrete dynamical systems. Applications to differential equations and discussions on the topology of the plane are the two themes that alternate throughout the five chapters of the book.
This book is a systematic presentation of the solution of one of the fundamental problems of the theory of random dynamical systems - the problem of topological classification and structural stability of linear hyperbolic random dynamical systems. As a relatively new and fast expanding field of research, this theory attracts the attention of researchers from various fields of science. It unites and develops the classical deterministic theory of dynamical systems and probability theory, hence finds many applications in a very wide range of disciplines from physics to biology to engineering, finance and economics. Recent developments call for a systematic presentation of the theory. Mathematicians working in the theory of dynamical systems, stochastic dynamics as well as those interested in applications of mathematical systems with random noise will find this timely book a valuable reference and rich source of modern mathematical methods and results.
This heavily class-tested book is an exposition of the theoretical foundations of hyperbolic manifolds. It is a both a textbook and a reference. A basic knowledge of algebra and topology at the first year graduate level of an American university is assumed. The first part is concerned with hyperbolic geometry and discrete groups. The second part is devoted to the theory of hyperbolic manifolds. The third part integrates the first two parts in a development of the theory of hyperbolic orbifolds. Each chapter contains exercises and a section of historical remarks. A solutions manual is available separately.
This collection of 18 research papers, dedicated to Pierre Lelong, describes the state of the art on representative problems of complex analysis and geometry. The book opens with an exposition of the achievements of Pierre Lelong on plurisubharmonic functions, closed positive currents, and their further study by other mathematicians. Moreover, a list of eleven open problems is given. All other contributions contain new results related, for example, to the following items: - Capacities, product of positive currents, L2 extension theorems, Bergman kernels and metrics, new properties of convex domains of finite type - Non-compact boundaries of Levi-flat hypersurfaces of C2, compact boundary problems as application of compactly supported measures orthogonal to polynomials, Hartogs' theorem on some open subsets of a projective manifold, Malgrange vanishing theorem with support conditions - Embeddings for 3-dimensional CR-manifolds, geometrization of hypoellipticity, stationary complex curves and complete integrability - Regular polynomial mappings of Ck in complex dynamics, a direct proof of the density of repulsive cycles in the Julia set. The book is aimed at researchers and advanced graduate students in complex and real analysis, algebraic geometry and number theory.
Meyer's Geometry and Its Applications, Second Edition, combines
traditional geometry with current ideas to present a modern
approach that is grounded in real-world applications. It balances
the deductive approach with discovery learning, and introduces
axiomatic, Euclidean geometry, non-Euclidean geometry, and
transformational geometry. The text integrates applications and
examples throughout and includes historical notes in many chapters.
The aim of this handbook is to create, for the first time, a systematic account of the field of spatial logic. The book comprises a general introduction, followed by fourteen chapters by invited authors. Each chapter provides a self-contained overview of its topic, describing the principal results obtained to date, explaining the methods used to obtain them, and listing the most important open problems. Jointly, these contributions constitute a comprehensive survey of this rapidly expanding subject.
This unique book's subject is meanders (connected, oriented, non-self-intersecting planar curves intersecting the horizontal line transversely) in the context of dynamical systems. By interpreting the transverse intersection points as vertices and the arches arising from these curves as directed edges, meanders are introduced from the graphtheoretical perspective. Supplementing the rigorous results, mathematical methods, constructions, and examples of meanders with a large number of insightful figures, issues such as connectivity and the number of connected components of meanders are studied in detail with the aid of collapse and multiple collapse, forks, and chambers. Moreover, the author introduces a large class of Morse meanders by utilizing the right and left one-shift maps, and presents connections to Sturm global attractors, seaweed and Frobenius Lie algebras, and the classical Yang-Baxter equation. Contents Seaweed Meanders Meanders Morse Meanders and Sturm Global Attractors Right and Left One-Shifts Connection Graphs of Type I, II, III and IV Meanders and the Temperley-Lieb Algebra Representations of Seaweed Lie Algebras CYBE and Seaweed Meanders
The importance of mathematics competitions has been widely
recognized for three reasons: they help to develop imaginative
capacity and thinking skills whose value far transcends
mathematics; they constitute the most effective way of discovering
and nurturing mathematical talent; and they provide a means to
combat the prevalent false image of mathematics held by high school
students, as either a fearsomely difficult or a dull and uncreative
subject. This book provides a comprehensive training resource for
competitions from local and provincial to national Olympiad level,
containing hundreds of diagrams, and graced by many light-hearted
cartoons. It features a large collection of what mathematicians
call "beautiful" problems - non-routine, provocative, fascinating,
and challenging problems, often with elegant solutions. It features
careful, systematic exposition of a selection of the most important
topics encountered in mathematics competitions, assuming little
prior knowledge. Geometry, trigonometry, mathematical induction,
inequalities, Diophantine equations, number theory, sequences and
series, the binomial theorem, and combinatorics - are all developed
in a gentle but lively manner, liberally illustrated with examples,
and consistently motivated by attractive "appetiser" problems,
whose solution appears after the relevant theory has been
expounded.
This book gives senior undergraduate and beginning graduate students and researchers in computer vision, applied mathematics, computer graphics, and robotics a self-contained introduction to the geometry of 3D vision; that is the reconstruction of 3D models of objects from a collection of 2D images. Following a brief introduction, Part I provides background materials for the rest of the book. The two fundamental transformations, namely rigid body motion and perspective projection are introduced and image formation and feature extraction discussed. Part II covers the classic theory of two view geometry based on the so-called epipolar constraint. Part III shows that a more proper tool for studying the geometry of multiple views is the so- called rank considtion on the multiple view matrix. Part IV develops practical reconstruction algorithms step by step as well as discusses possible extensions of the theory. Exercises are provided at the end of each chapter. Software for examples and algorithms are available on the author's website.
Based on a series of lectures for adult students, this lively and entertaining book proves that, far from being a dusty, dull subject, geometry is in fact full of beauty and fascination. The author's infectious enthusiasm is put to use in explaining many of the key concepts in the field, starting with the Golden Number and taking the reader on a geometrical journey via Shapes and Solids, through the Fourth Dimension, finishing up with Einstein's Theories of Relativity. Equally suitable as a gift for a youngster or as a nostalgic journey back into the world of mathematics for older readers, John Barnes' book is the perfect antidote for anyone whose maths lessons at school are a source of painful memories. Where once geometry was a source of confusion and frustration, Barnes brings enlightenment and entertainment. In this second edition, stimulated by recent lectures at Oxford, further material and extra illustrations have been added on many topics including Coloured Cubes, Chaos and Crystals. "
This introduction to topology emphasises a geometric approach with a focus on surfaces. A primary feature is a large collection of exercises and projects, which fosters a teaching style making the student an active class participant. A wide range of material at different levels supports flexible use of the book for a variety of students. Part I is appropriate for a one semester or two quarter course, and Part II, (which is problem based), allows the book to be used for a year long course which supports a variety of syllabuses.
Growing transportation costs and tight delivery schedules mean that good located decisions are more crucial than ever in the success or failure of industrial and puplic projects. The development of realistic location models is an essential phase in every locational decision process. Especially when dealing with geometric representations of continuous (planar) location model problems, the goegraphical reality must be incorporated. This text develops the mathematical implications of barriers to the geometrical and analytical characteristics of continuous location problems. Besides their relevance in the application of location theoretic results, location problems with barriers are also very interesting from a mathematical point of view. The nonconvexity of distance measures in the presence of barriers leads to nonconvex optimization problems. Most of the classical methods in continuous location theory rely heaily on the convexity of the objective function and will thus fail in this context. On the other hand, general methods in global optimization capable of treating nonconvex problems ignore the geometric charateristics of the location problems considered. Theoretic as well as algorithmic approaches are utilized to overcome the described difficulties for the solution of location problems with barriers. Depending on the barrier shapes, the underlying distance measure, and type of objective function, different concepts are conceived to handle the nonconvexity of the problem. This book will appeal to those working in operations research and management science and mathematicians interested in optimization theory and its applications.
This textbook introduces geometric measure theory through the notion of currents. Currents, continuous linear functionals on spaces of differential forms, are a natural language in which to formulate types of extremal problems arising in geometry, and can be used to study generalized versions of the Plateau problem and related questions in geometric analysis. Motivating key ideas with examples and figures, this book is a comprehensive introduction ideal for both self-study and for use in the classroom. The exposition demands minimal background, is self-contained and accessible, and thus is ideal for both graduate students and researchers. |
You may like...
I. C. S. Reference Library: Types of…
International Correspondence Schools
Paperback
R744
Discovery Miles 7 440
|