![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Geometry > General
One ofthe most important features of the development of physical and mathematical sciences in the beginning of the 20th century was the demolition of prevailing views of the three-dimensional Euclidean space as the only possible mathematical description of real physical space. Apriorization of geometrical notions and identification of physical 3 space with its mathematical modellR were characteristic for these views. The discovery of non-Euclidean geometries led mathematicians to the understanding that Euclidean geometry is nothing more than one of many logically admissible geometrical systems. Relativity theory amended our understanding of the problem of space by amalgamating space and time into an integral four-dimensional manifold. One of the most important problems, lying at the crossroad of natural sciences and philosophy is the problem of the structure of the world as a whole. There are a lot of possibilities for the topology offour dimensional space-time, and at first sight a lot of possibilities arise in cosmology. In principle, not only can the global topology of the universe be complicated, but also smaller scale topological structures can be very nontrivial. One can imagine two "usual" spaces connected with a "throat," making the topology of the union complicated."
This book presents methods of solving problems in three areas of elementary combinatorial mathematics: classical combinatorics, combinatorial arithmetic, and combinatorial geometry. In each topic, brief theoretical discussions are immediately followed by carefully worked-out examples of increasing degrees of difficulty, and by exercises that range from routine to rather challenging. While this book emphasizes some methods that are not usually covered in beginning university courses, it nevertheless teaches techniques and skills that are useful not only in the specific topics covered here. There are approximately 310 examples and 650 exercises. Jiri Herman is the headmaster of a prestigious secondary school (Gymnazium) in Brno, Radan Kucera is Associate Professor of Mathematics at Masaryk University in Brno, and Jaromir Simsa is a researcher at the Mathematical Institute of the Academy of Sciences of the Czech Republic. The translator, Karl Dilcher, is Professor of Mathematics at Dalhousie University in Canada. This book can be seen as a continuation of the previous book by the same authors and also translated by Karl Dilcher, Equations and Inequalities: Elementary Problems and Theorems in Algebra and Number Theory (Springer-Verlag 2000).
From the reviews: "This attractive book provides an account of the theory of special relativity from a geometrical viewpoint, explaining the unification and insights that are given by such a treatment. [ ] Can be read with profit by all who have taken a first course in relativity physics." ASLIB Book Guide
The seminal 1970 Moscow thesis of Grigoriy A. Margulis, published for the first time. Entitled "On Some Aspects of the Theory of Anosov Systems," it uses ergodic theoretic techniques to study the distribution of periodic orbits of Anosov flows. The thesis introduces the "Margulis measure" and uses it to obtain a precise asymptotic formula for counting periodic orbits. This has an immediate application to counting closed geodesics on negatively curved manifolds. The thesis also contains asymptotic formulas for the number of lattice points on universal coverings of compact manifolds of negative curvature. The thesis is complemented by a survey by Richard Sharp, discussing more recent developments in the theory of periodic orbits for hyperbolic flows, including the results obtained in the light of Dolgopyat's breakthroughs on bounding transfer operators and rates of mixing.
This book is a concept-oriented treatment of the structure theory of association schemes. The generalization of Sylow 's group theoretic theorems to scheme theory arises as a consequence of arithmetical considerations about quotient schemes. The theory of Coxeter schemes (equivalent to the theory of buildings) emerges naturally and yields a purely algebraic proof of Tits main theorem on buildings of spherical type.
This monograph (in two volumes) deals with non scalar variational problems arising in geometry, as harmonic mappings between Riemannian manifolds and minimal graphs, and in physics, as stable equilibrium configuations in nonlinear elasticity or for liquid crystals. The presentation is selfcontained and accessible to non specialists. Topics are treated as far as possible in an elementary way, illustrating results with simple examples; in principle, chapters and even sections are readable independently of the general context, so that parts can be easily used for graduate courses. Open questions are often mentioned and the final section of each chapter discusses references to the literature and sometimes supplementary results. Finally, a detailed Table of Contents and an extensive Index are of help to consult this monograph
Symmetry is a key ingredient in many mathematical, physical, and biological theories. Using representation theory and invariant theory to analyze the symmetries that arise from group actions, and with strong emphasis on the geometry and basic theory of Lie groups and Lie algebras, Symmetry, Representations, and Invariants is a significant reworking of an earlier highly-acclaimed work by the authors. The result is a comprehensive introduction to Lie theory, representation theory, invariant theory, and algebraic groups, in a new presentation that is more accessible to students and includes a broader range of applications. The philosophy of the earlier book is retained, i.e., presenting the principal theorems of representation theory for the classical matrix groups as motivation for the general theory of reductive groups. The wealth of examples and discussion prepares the reader for the complete arguments now given in the general case. Key Features of Symmetry, Representations, and Invariants (1) Early chapters suitable for honors undergraduate or beginning graduate courses, requiring only linear algebra, basic abstract algebra, and advanced calculus; (2) Applications to geometry (curvature tensors), topology (Jones polynomial via symmetry), and combinatorics (symmetric group and Young tableaux); (3) Self-contained chapters, appendices, comprehensive bibliography; (4) More than 350 exercises (most with detailed hints for solutions) further explore main concepts; (5) Serves as an excellent main text for a one-year course in Lie group theory; (6) Benefits physicists as well as mathematicians as a reference work.
Lattices are discrete subgroups of maximal rank in a Euclidean space. To each such geometrical object, we can attach a canonical sphere packing which, assuming some regularity, has a density. The question of estimating the highest possible density of a sphere packing in a given dimension is a fascinating and difficult problem: the answer is known only up to dimension 3. This book thus discusses a beautiful and central problem in mathematics, which involves geometry, number theory, coding theory and group theory, centering on the study of extreme lattices, i.e. those on which the density attains a local maximum, and on the so-called perfection property. Written by a leader in the field, it is closely related to, though disjoint in content from, the classic book by J.H. Conway and N.J.A. Sloane, Sphere Packings, Lattices and Groups, published in the same series as vol. 290. Every chapter except the first and the last contains numerous exercises. For simplicity those chapters involving heavy computational methods contain only few exercises. It includes appendices on Semi-Simple Algebras and Quaternions and Strongly Perfect Lattices.
This book is a monograph on unitals embedded in ?nite projective planes. Unitals are an interesting structure found in square order projective planes, and numerous research articles constructing and discussing these structures have appeared in print. More importantly, there still are many open pr- lems, and this remains a fruitful area for Ph.D. dissertations. Unitals play an important role in ?nite geometry as well as in related areas of mathematics. For example, unitals play a parallel role to Baer s- planes when considering extreme values for the size of a blocking set in a square order projective plane (see Section 2.3). Moreover, unitals meet the upper bound for the number of absolute points of any polarity in a square order projective plane (see Section 1.5). From an applications point of view, the linear codes arising from unitals have excellent technical properties (see 2 Section 6.4). The automorphism group of the classical unitalH =H(2, q ) is 2-transitive on the points ofH, and so unitals are of interest in group theory. In the ?eld of algebraic geometry over ?nite ?elds, H is a maximal curve that contains the largest number of F -rational points with respect to its genus, 2 q as established by the Hasse-Weil boun
In 1961 Robinson introduced an entirely new version of the theory of infinitesimals, which he called Nonstandard analysis'. Nonstandard' here refers to the nature of new fields of numbers as defined by nonstandard models of the first-order theory of the reals. This system of numbers was closely related to the ring of Schmieden and Laugwitz, developed independently a few years earlier. During the last thirty years the use of nonstandard models in mathematics has taken its rightful place among the various methods employed by mathematicians. The contributions in this volume have been selected to present a panoramic view of the various directions in which nonstandard analysis is advancing, thus serving as a source of inspiration for future research. Papers have been grouped in sections dealing with analysis, topology and topological groups; probability theory; and mathematical physics. This volume can be used as a complementary text to courses in nonstandard analysis, and will be of interest to graduate students and researchers in both pure and applied mathematics and physics.
In many fields of modern mathematics specialised scientific
software becomes increasingly important. Hence, tremendous effort
is taken by numerous groups all over the world to develop
appropriate solutions.
* Provides an elegant introduction to the geometric concepts that are important to applications in robotics * Includes significant state-of-the art material that reflects important advances, connecting robotics back to mathematical fundamentals in group theory and geometry * An invaluable reference that serves a wide audience of grad students and researchers in mechanical engineering, computer science, and applied mathematics
Compared to other popular math books, there is more algebraic manipulation, and more applications of algebra in number theory and geometry Presents an exciting variety of topics to motivate beginning students May be used as an introductory course or as background reading
Als mehrbandiges Nachschlagewerk ist das Springer-Handbuch der Mathematik in erster Linie fur wissenschaftliche Bibliotheken, akademische Institutionen und Firmen sowie interessierte Individualkunden in Forschung und Lehregedacht. Es erganzt das einbandige themenumfassende Springer-Taschenbuch der Mathematik (ehemaliger Titel Teubner-Taschenbuch der Mathematik), das sich in seiner begrenzten Stoffauswahl besonders an Studierende richtet.Teil IV des Springer-Handbuchs enthalt die folgenden Zusatzkapitel zum Springer-Taschenbuch: Hohere Analysis, Lineare sowie Nichtlineare Funktionalanalysis und ihre Anwendungen, Dynamische Systeme, Nichtlineare partielle Differentialgleichungen, Mannigfaltigkeiten, Riemannsche Geometrie und allgemeine Relativitatstheorie, Liegruppen, Liealgebren und Elementarteilchen, Topologie, Krummung und Analysis.
This is a translation of Edmund HusserI's lecture course from the Summer semester 1907 at the University of Gottingen. The German original was pub lished posthumously in 1973 as Volume XVI of Husserliana, Husserl's opera omnia. The translation is complete, including both the main text and the supplementary texts (as Husserliana volumes are usually organized), except for the critical apparatus which provides variant readings. The announced title of the lecture course was "Main parts of the phenome nology and critique of reason." The course began with five, relatively inde pendent, introductory lectures. These were published on their own in 1947, bearing the title The idea ojphenomenology.l The "Five Lectures" comprise a general orientation by proposing the method to be employed in the subsequent working out of the actual problems (viz., the method of "phenomenological reduction") and by clarifying, at least provisionally, some technical terms that will be used in the labor the subsequent lectures will carry out. The present volume, then, presents that labor, i.e., the method in action and the results attained. As such, this text dispels the abstract impression which could not help but cling to the first five lectures taken in isolation. Accord ingly, we are here given genuine "introductory lectures," i.e., an introduction to phenomenology in the genuine phenomenological sense of engaging in the work of phenomenology, going to the "matters at issue themselves," rather than remaining aloof from them in abstract considerations of standpoint and approach."
Geometry is the cornerstone of computer graphics and computer animation, and provides the framework and tools for solving problems in two and three dimensions. This may be in the form of describing simple shapes such as a circle, ellipse, or parabola, or complex problems such as rotating 3D objects about an arbitrary axis. Geometry for Computer Graphics draws together a wide variety of geometric information that will provide a sourcebook of facts, examples, and proofs for students, academics, researchers, and professional practitioners. The book is divided into 4 sections: the first summarizes hundreds of formulae used to solve 2D and 3D geometric problems. The second section places these formulae in context in the form of worked examples. The third provides the origin and proofs of these formulae, and communicates mathematical strategies for solving geometric problems. The last section is a glossary of terms used in geometry.
Topics in Hyperplane Arrangements, Polytopes and Box-Splines brings together many areas of mathematics that focus on methods to compute the number of integral points in suitable families or variable polytopes. The topics introduced expand upon differential and difference equations, approximation theory, cohomology, and module theory. The discussion is divided into five extensive parts; the first of which provides basic material on convex sets, combinatorics, polytopes, Laplace and Fourier transforms, and the language of modules over the Weyl algebra. The following four sections focus on the differentiable case, discrete case, and several applications, e.i., two independent chapters explore the computations of De Rham cohomology for the complement of a hyperplane or toric arrangement. This book, written by two distinguished authors, engages a broad audience by providing a strong foundation in very important areas. This book may be used in a classroom setting as well as a reference for researchers.
At last: geometry in an exemplary, accessible and attractive form! The authors emphasise both the intellectually stimulating parts of geometry and routine arguments or computations in concrete or classical cases, as well as practical and physical applications. They also show students the fundamental concepts and the difference between important results and minor technical routines. Altogether, the text presents a coherent high school curriculum for the geometry course, naturally backed by numerous examples and exercises.
Trained to extract actionable information from large volumes of high-dimensional data, engineers and scientists often have trouble isolating meaningful low-dimensional structures hidden in their high-dimensional observations. Manifold learning, a groundbreaking technique designed to tackle these issues of dimensionality reduction, finds widespread application in machine learning, neural networks, pattern recognition, image processing, and computer vision. Filling a void in the literature, Manifold Learning Theory and Applications incorporates state-of-the-art techniques in manifold learning with a solid theoretical and practical treatment of the subject. Comprehensive in its coverage, this pioneering work explores this novel modality from algorithm creation to successful implementation-offering examples of applications in medical, biometrics, multimedia, and computer vision. Emphasizing implementation, it highlights the various permutations of manifold learning in industry including manifold optimization, large scale manifold learning, semidefinite programming for embedding, manifold models for signal acquisition, compression and processing, and multi scale manifold. Beginning with an introduction to manifold learning theories and applications, the book includes discussions on the relevance to nonlinear dimensionality reduction, clustering, graph-based subspace learning, spectral learning and embedding, extensions, and multi-manifold modeling. It synergizes cross-domain knowledge for interdisciplinary instructions, offers a rich set of specialized topics contributed by expert professionals and researchers from a variety of fields. Finally, the book discusses specific algorithms and methodologies using case studies to apply manifold learning for real-world problems.
REFLECTIONS ON SPACETIME - FOUNDATIONS, PHILOSOPHY AND HISTORY During the academic year 1992/93, an interdisciplinary research group constituted itself at the Zentrum fUr interdisziplinare Forschung (ZiF) in Bielefeld, Germany, under the title 'Semantical Aspects of Spacetime Theories', in which philosophers and physicists worked on topics in the interpretation and history of relativity theory. The present issue consists of contributions resulting from material presented and discussed in the group during the course of that year. The scope of the papers ranges from rather specialised issues arising from general relativity such as the problem of referential indeterminacy, to foundational questions regarding spacetime in the work of Carnap, Weyl and Hilbert. It is well known that the General Theory of Relativity (GTR) admits spacetime models which are 'exotic' in the sense that observers could travel into their own past. This poses a number of problems for the physical interpretation of GTR which are also relevant in the philosophy of spacetime. It is not enough to exclude these exotic models simply by stating that we live in a non-exotic universe, because it might be possible to "operate time machines" by actively changing the topology of the future part of spacetime. In his contribution, Earman first reviews the attempts of physicists to prove "chronology protection theorems" (CPTs) which exclude the operation of time machines under reasonable assumptions.
This monograph is devoted to a completely new approach to geometric problems arising in the study of random fields. The groundbreaking material in Part III, for which the background is carefully prepared in Parts I and II, is of both theoretical and practical importance, and striking in the way in which problems arising in geometry and probability are beautifully intertwined. "Random Fields and Geometry" will be useful for probabilists and statisticians, and for theoretical and applied mathematicians who wish to learn about new relationships between geometry and probability. It will be helpful for graduate students in a classroom setting, or for self-study. Finally, this text will serve as a basic reference for all those interested in the companion volume of the applications of the theory.
The textbook Geometry, published in French by CEDICjFernand Nathan and in English by Springer-Verlag (scheduled for 1985) was very favorably re ceived. Nevertheless, many readers found the text too concise and the exercises at the end of each chapter too difficult, and regretted the absence of any hints for the solution of the exercises. This book is intended to respond, at least in part, to these needs. The length of the textbook (which will be referred to as B] throughout this book) and the volume of the material covered in it preclude any thought of publishing an expanded version, but we considered that it might prove both profitable and amusing to some of our readers to have detailed solutions to some of the exercises in the textbook. At the same time, we planned this book to be independent, at least to a certain extent, from the textbook; thus, we have provided summaries of each of its twenty chapters, condensing in a few pages and under the same titles the most important notions and results, used in the solution of the problems. The statement of the selected problems follows each summary, and they are numbered in order, with a reference to the corresponding place in B]. These references are not meant as indications for the solutions of the problems. In the body of each summary there are frequent references to B], and these can be helpful in elaborating a point which is discussed too cursorily in this book."
The book gives a systematic exposition of the diverse ideas and methods in the area, from algebraic topology of manifolds to invariants arising from quantum field theories. The main topics covered include: constructions and classification of homology 3-spheres, Rokhlin invariant, Casson invariant and its extensions, and Floer homology and gauge-theoretical invariants of homology cobordism. Many of the topics covered in the book appear in monograph form for the first time. The book gives a rather broad overview of ideas and methods and provides a comprehensive bibliography. The text will be a valuable source for both the graduate student and researcher in mathematics and theoretical physics.
This is essentially a book on linear algebra. But the approach is somewhat unusual in that we emphasise throughout the geometric aspect of the subject. The material is suitable for a course on linear algebra for mathe matics majors at North American Universities in their junior or senior year and at British Universities in their second or third year. However, in view of the structure of undergraduate courses in the United States, it is very possible that, at many institutions, the text may be found more suitable at the beginning graduate level. The book has two aims: to provide a basic course in linear algebra up to, and including, modules over a principal ideal domain; and to explain in rigorous language the intuitively familiar concepts of euclidean, affine, and projective geometry and the relations between them. It is increasingly recognised that linear algebra should be approached from a geometric point of VIew. This applies not only to mathematics majors but also to mathematically-oriented natural scientists and engineers."
Recent progress in research, teaching and communication has arisen
from the use of new tools in visualization. To be fruitful,
visualization needs precision and beauty. This book is a source of
mathematical illustrations by mathematicians as well as artists. It
offers examples in many basic mathematical fields including
polyhedra theory, group theory, solving polynomial equations,
dynamical systems and differential topology. |
![]() ![]() You may like...
Handbook of Research on Multimedia…
Sumit Kumar Mahana, Rajesh Kumar Aggarwal, …
Hardcover
R6,114
Discovery Miles 61 140
Wordpress: The Missing Manual - The Book…
Matthew MacDonald
Paperback
Developments in Functional Equations and…
Janusz Brzdek, Krzysztof Cieplinski, …
Hardcover
R3,687
Discovery Miles 36 870
Well-Posedness of Parabolic Difference…
A Ashyralyev, P.E. Sobolevskii
Hardcover
R2,598
Discovery Miles 25 980
|