![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Earth & environment > Earth sciences > Geology & the lithosphere > Economic geology > General
This book presents a geostatistical framework for data integration into subsurface Earth modeling. It offers extensive geostatistical background information, including detailed descriptions of the main geostatistical tools traditionally used in Earth related sciences to infer the spatial distribution of a given property of interest. This framework is then directly linked with applications in the oil and gas industry and how it can be used as the basis to simultaneously integrate geophysical data (e.g. seismic reflection data) and well-log data into reservoir modeling and characterization. All of the cutting-edge methodologies presented here are first approached from a theoretical point of view and then supplemented by sample applications from real case studies involving different geological scenarios and different challenges. The book offers a valuable resource for students who are interested in learning more about the fascinating world of geostatistics and reservoir modeling and characterization. It offers them a deeper understanding of the main geostatistical concepts and how geostatistics can be used to achieve better data integration and reservoir modeling.
The region of the Sao Francisco river valley in eastern Brazil encompasses two main components of the geologic framework of the South American continent: the Sao Francisco craton and its marginal orogenic belts. Cratons, as the oldest, differentiated and relatively stable pieces of the continental lithosphere, preserve a substantial part of the Earth's memory. Orogenic belts, on the other hand, record collisional processes that occurred during a limited time span. Because of their topographic relief, mountain belts developed along craton margins provide however access to rock successions not exposed in the low lands of the adjacent cratons. The combination of geologic information obtained in cratonic domains and their marginal orogenic belts thus form the basis for deciphering substantial periods of Earth's history. Corresponding to the most intensively studied portion of the Precambrian nucleus of the South American plate, the Sao Francisco craton and its margins host a rock record that spans from the Paleoarchean to the Cenozoic. Precambrian sedimentary successions that witness ancient Earth processes - many of them of global significance - are especially well preserved and exposed in this region. With all these attributes the Sao Francisco craton together with its fringing orogenic belts can be viewed as a 'continent within a continent' or a 'continent in miniature'.
This book concisely describes the architecture of the oil and gas pipelines in the Black-Caspian Seas Region and analyzes the status quo and perspectives of oil and gas production in this region. The authors present numerous projects, each of which has made a substantial contribution to the development of pipeline transport and transit in this part of the world, and discuss them in detail. The topics covered include: the region's geographic characteristics; the region's hydrocarbon potential; Russian and EU policy on pipeline transport; Kazakhstan's pipeline policy; Chinese pipeline projects; the Bulgarian gas transmission system; environmental risks in the production and transportation of hydrocarbons; satellite monitoring; and subsea leak detection. This volume offers a valuable resource for politicians, specialists in the oil and gas business, decision-makers, and environmentalists alike.
This book provides practical morphological information, together with detailed illustrations and concise texts explaining each entry. The book details the morphological characters of each organism, providing fundamental information for palaeontologists and palaeobiologists alike. Each chapter starts with a brief introduction and goes on to describe the organism's morphology in detail, followed by a brief note on classification and lastly illustrated examples of stratigraphically important organisms through time along with their major distinguishing characters. The book includes over 3000 clearly labelled, hand-drawn and classroom-friendly illustrations of over 1200 species.
This book focuses on the metallogeny and main tectonic events of the North China Craton from early Precambrian to Phanerozoic. It covers the Archean crustal growth, Paleoproterozoic rifting-subduction-collision processes, Great Oxidation Event, Meso-Neoproterozoic multiple rifting, Phanerozoic reworking of the North China Craton, as well as metallogeny related to above different processes. The North China Craton is one of the oldest cratons in the world. It has experienced a complex geological evolution since the early Precambrian, and carries important records of secular changes in tectonics and metallogeny. It provides a systematic review and new results on the growth and evolution of the North China Craton and metallogeny. It will be of broad interest to the earth scientists working in the fields of economic geology, geochemistry, and tectonics of the North China Craton and eastern Asian.
This book offers a compact guide to geological core analysis, covering both theoretical and practical aspects of geological studies of reservoir cores. It equips the reader with the knowledge needed to precisely and accurately analyse cores. The book begins by providing a description of a coring plan, coring, and core sampling and continues with a sample preparation for geological analysis. It then goes on to explain how the samples are named, classified and integrated in order to understand the geological properties that dictate reservoir characteristics. Subsequently, porosity and permeability data derived from routine experiments are combined to define geological rock types and reduce reservoir heterogeneity. Sequence stratigraphy is introduced for reservoir zonation. Core log preparation is also covered, allowing reservoirs to be analysed even more accurately. As the study of core samples is the only way to accurately gauge reservoir properties, this book provides a useful guide for all geologists and engineers working with subsurface samples.
Weak rocks encountered in open pit mines cover a wide variety of materials, with properties ranging between soil and rock. As such, they can provide a significant challenge for the slope designer. For these materials, the mass strength can be the primary control in the design of the pit slopes, although structures can also play an important role. Because of the typically weak nature of the materials, groundwater and surface water can also have a controlling influence on stability. Guidelines for Open Pit Slope Design in Weak Rocks is a companion to Guidelines for Open Pit Slope Design, which was published in 2009 and dealt primarily with strong rocks. Both books were commissioned under the Large Open Pit (LOP) project, which is sponsored by major mining companies. These books provide summaries of the current state of practice for the design, implementation and assessment of slopes in open pits, with a view to meeting the requirements of safety, as well as the recovery of anticipated ore reserves. This book, which follows the general cycle of the slope design process for open pits, contains 12 chapters. These chapters were compiled and written by industry experts and contain a large number of case histories. The initial chapters address field data collection, the critical aspects of determining the strength of weak rocks, the role of groundwater in weak rock slope stability and slope design considerations, which can differ somewhat from those applied to strong rock. The subsequent chapters address the principal weak rock types that are encountered in open pit mines, including cemented colluvial sediments, weak sedimentary mudstone rocks, soft coals and chalk, weak limestone, saprolite, soft iron ores and other leached rocks, and hydrothermally altered rocks. A final chapter deals with design implementation aspects, including mine planning, design implementation, monitoring, surface water control and closure of weak rock slopes. Key Features: Illustration of the best practice in modern open pit mines State of the art approaches for challenging designs Use of numerous case histories written by large-open pit operators to illustrate state of practice Individual chapters/sections written by leaders in the industry As with the other books in this series, Guidelines for Open Pit Slope Design in Weak Rocks provides guidance to practitioners involved in the design and implementation of open pit slopes, particularly geotechnical engineers, mining engineers, geologists and other personnel working at operating mines.
This book investigates geological CO2 storage and its role in greenhouse gas emissions reduction, enhanced oil recovery, and environmentally responsible use of fossil fuels. Written for energy/environmental regulators at every level of government (federal, state, etc.), scientists/academics, representatives from the power and fossil energy sectors, NGOs, and other interested parties, this book uses the characterization of the Rock Springs Uplift site in Wyoming as an integrated case study to illustrate the application of geological CO2 storage science, principles, and theory in a real-world scenario.
The fundamentals of methods in nuclear geophysics and their practical applications in engineering geology, hydrology, hydrogeology, agriculture and environmental science are discussed in this book. The methods and apparatus based on absorption and scattering of gamma and neutron radiation for determination of density and soil moisture in natural conditions are presented in Chapters 2, 3, and 4. The theoretical fundamentals and installations of the penetration logging techniques where gamma, gamma-gamma and neutron logging in combination with static penetration form common complexes for engineering geology and hydrogeology exploration without boring holes are described. The developed constructions and practical use penetration logging installations for applications on land and marine shelves are described in Chapters 5, 6, 7, and 8. The physical fundamentals for the use of the natural stable and radioactive isotopes for study of the global hydrological cycle are provided. The experimental data, origin and distribution of cosmogenic and radiogenic isotopes in the oceans, atmospheric moisture, surface and underground waters are presented in Chapters 9, 10, and 11. The sources and conditions of the radioactive contamination of the natural waters are discussed in Chapters 12 and 13. This book will be of interest to scientists and researchers who use nuclear geophysics methods in engineering geology, hydrology, hydrogeology and hydrogeoecology. Lecturers, students, and postgraduates in these subjects will also find it useful.
This book is a collection of ISRM suggested methods for testing or measuring properties of rocks and rock masses both in the laboratory and in situ, as well as for monitoring the performance of rock engineering structures. The first collection (Yellow Book) has been published in 1981. In order to provide access to all the Suggested Methods in one volume, the ISRM Blue Book was published in 2007 (by the ISRM via the Turkish National Group) and contains the complete set of Suggested Methods from 1974 to 2006 inclusive. The papers in this most recent volume have been published during the last seven years in international journals, mainly in Rock Mechanics and Rock Engineering. They offer guidance for rock characterization procedures and laboratory and field testing and monitoring in rock engineering. These methods provide a definitive procedure for the identification, measurement and evaluation of one or more qualities, characteristics or properties of rocks or rock systems that produces a test result.
This book addresses the principles and methods for determining petroleum source rocks based on fossil spores and pollen. Studying petroliferous basins in China, we discovered that there are often as many as three different sources of the microfossils: the source rocks, the rocks along the pathway, and the reservoir rocks. Therefore, fossil spores, pollen and algae from inland and coastal shelf petroliferous basins are analyzed and illustrated to show this complex process. Furthermore, the organic origin theory of oil is proven and environmental characteristics for hydrocarbon source-rock formation are discussed. Along with the geochronical and geographic distribution of non-marine petroleum source rocks in China, the mechanisms of petroleum migration following the pathways to the reservoirs are investigated. It will be a valuable reference work as well as a textbook for a wider research areas ranging from stratigraphy, palynology, palaeontology and petroleum geology.
At the XXIV General Assembly of the International Union of Geodesy and Geophysics (IUGG), held July 2 13, 2007 in Perugia, Italy, the International As- ciation of Geodesy (IAG) also had its quadrennial General Assembly. The IAG - organized and contributed to several Union Symposia, as well as to Joint Symposia with other Associations. It also organized ve Symposia of its own, one dedicated to eachofitsfourCommissionsanda fthonededicatedtotheGlobalGeodeticObse- ing System (GGOS). This volume contains the proceedings of these ve Symposia, which are listed below: Symposium GS001: Reference Frames Convener: H. Drewes Co-convener: A. Dermanis Symposium GS002: Gravity Field Convener: C. Jekeli Co-conveners: U. Marti, S. Okubo, N. Sneeuw, I. Tziavos, G. Vergos, M. Vermeer, P. Visser Symposium GS003: Earth Rotation and Geodynamics Convener: V. Dehant Co-convener: Chengli Huang Symposium GS004: Positioning and Applications Convener: C. Rizos Co-convener: S. Verhagen Symposium GS005: The Global Geodetic Observing System (GGOS) Conveners: M. Rothacher Co-conveners: R. Neilan, H. -P. Plag The Symposia were organized based on the structure of the IAG (i. e., one per Commission) and covered the there pillars of geodesy, namely geometry, Earth ro- tion, and gravity eld, plus their applications. The inclusion of the Symposium on GGOS which is no longer a project but a major component of the IAG integrated all geodetic areas and highlighted the importance of multidisciplinarity in, and for, geodetic research."
The thesis of Anna Alexandra Vackiner focuses on the geometric architecture and tectonic evolution of the Permian series, combining seismic interpretation (3D block), field studies in an analogue basin (Panamint Valley in California), as well as 2D restoration of representative cross sections through time in order to illustrate the complex interaction between multiphase extension, inversion and salt diapirism. It will be of major interest for exploration geologists involved in tectonically complex areas. - Francois Roure, August 2012 This thesis improves the understanding and localization of the Upper Rotliegend II tight gas reservoir rock facies. It provides insights into the detailed Upper Rotliegend II palaeo-topography and local tectonically induced sediment thickness changes prior to a multi-phase tectonic overprinting. The research presented in this study further focuses on the tectonically induced synsedimentary facies distribution in transtensional continental settings on the basis of a comparison with a modern field analogue, which enables a detailed analysis of the reservoir rock's distribution and its properties. The study is rounded off with an analysis of the influence of the multiphase tectonic overprinting on the mature Upper Rotliegend II reservoir rocks.
"The thesis of Philipp Antrett is focused on reservoir properties, petrography, lithofacies and sedimentology, core analysis and nanoporosity studies. It will be of major interest for colleagues involved in the exploration and production of tight gas reservoirs in Northern Europe and elsewhere." - Francois Roure, August 2012 This thesis describes a multidisciplinary, multiscale approach to the analysis of tight gas reservoirs. It focused initially on the facies architecture of a Permian tight gas field in the Southern Permian Basin (SPB), East Frisia, northern Germany. To improve field development, 3D seismic data, wireline and core data were compared to a reservoir analogue in the Panamint Valley, California, United States. In addition to the large scale approach, a work flow that investigates microporosity by combining Scanning Electron Microscopy-Broad Ion Beam (SEM-BIB) and optical microscopy was developed. For a better understanding of the depositional environment and reservoir rock distribution in the SPB, a sedimentary facies analysis of four cores from the tight gas field in East Frisia was compared to a second study area in northern central Germany. This study demonstrates that tight gas exploration and production requires multidisciplinary, multiscale approaches beyond standard seismic interpretation work flows to better understand the temporal and spatial evolution of these complex reservoirs.
This book will broaden readers' understanding of pegmatites in a special geodynamic setting, dealing with the emplacement of the Hagendorf-Pleystein Pegmatite Province (HPPP) in the Central European Variscides. This treatise illustrates the complex processes leading to the formation and partial destruction of the pegmatites, documenting the geochronological, chemical, mineralogical, geological and geomorphological / sedimentological data set. The book starts with a detailed account of the economic geology of the various pegmatites, explaining why these deposits are a major resource of ceramic raw materials. In its concluding section, a model of the pegmatite evolution in an ensialic orogen provides meaningful insights into the genetic aspects of pegmatite generation. The Late Paleozoic rare-element pegmatites of the HPPP, Oberpfalz-SE, Germany, rank among the largest concentrations in Europe. The biggest pegmatite of this mining district totals 4.4 million tons of ore (Hagendorf-South). The mining history of the HPPP is restricted to the 20th century, when local entrepreneurs started mining operations in search of ceramic raw materials, feldspar and quartz. Today the "Silbergrube Aplite" is still worked for feldspar. The traditional mining of pegmatitic and aplitic rocks in Central Europe, such as the Bohemian Massif, which is shared by Germany, the Czech Republic, Poland and Austria, has been focused on these industrial minerals. In addition to these major commodities, lithium was mined for a period of time. But even today many of these pegmatites of calc-alkaline affiliation have not lost their appeal to mineralogists and mineral enthusiasts for their wealth of minerals that contain P, Nb, Ta, Li, Be, B, U, Th, Sc, Ti and Sn. The most favorable crustal section to bring about pegmatitic rocks of this type, encompassing pegmatoids, metapegmatites, reactivated pseudopegmatites and pegmatites sensu stricto is the ensialic orogen, exemplified by the Variscan (Hercynian) Orogen, which geodynamically connects the Paleozoic pegmatite provinces in North America and Europe. The geological history of the HPPP, however, goes much further than the Carboniferous-Permian magmatic activity, when the last structural disturbances of the Variscan orogeny affected the NE-Bavarian Basement between 450 and 330 Ma. During this time mafic magmatic rocks together with calcareous and arenaceous sediments were converted into paragneisses, calcsilicate rocks, and amphibolites. It is the period of time when tectonic shortening led to over thrusting and when the emplacement of nappes and the architectural elements of the ensialic orogen began taking shape. During the Late Permian, the Mesozoic and the Cenozoic, the HPPP did not lie idle in geological terms; hypogene and supergene alteration continued and found its most recent expression in alluvial-fluvial "nigrine" placer deposits, which resulted from the unroofing of the pegmatites and aplites in the HPPP and can be used even outside HPPP as an ore guide to pegmatites.
This timely book begins with an overview of shale gas reservoir features such as natural fracture systems, multi-fractured horizontal wells, adsorption/desorption of methane, and non-linear flow within the reservoir. Geomechanical modelling, an aspect of importance in ultra-low permeability reservoirs, is also presented in detail. Taking these complex features of shale reservoirs into account, the authors develop a numerical model, which is verified with field data using the history matching technique. Based on this model, the pressure transient and production characteristics of a fractured horizontal well in a shale gas reservoir are analysed with respect to reservoir and fracture properties. Methods for the estimation of shale properties are also detailed. Minifrac tests, rate transient tests (RTA), and type curve matching are used to estimate the initial pressure, permeability, and fracture half-length. Lastly, future technologies such as the technique of injecting CO2 into shale reservoirs are presented. The book will be of interest to industrial practitioners, as well as to academics and graduate students in the field of reservoir engineering.
A significant step forward in the world of earth observation was made with the development of imaging spectrometry. Imaging spectrometers measure reflected solar radiance from the earth in many narrow spectral bands. Such a spectroscopical imaging system is capable of detecting subtle absorption bands in the reflectance spectra and measure the reflectance spectra of various objects with a very high accuracy. As a result, imaging spectrometry enables a better identification of objects at the earth surface and a better quantification of the object properties than can be achieved by traditional earth observation sensors such as Landsat TM and SPOT. The various chapters in the book present the concepts of imaging spectrometry by discussing the underlying physics and the analytical image processing techniques. The second part of the book presents in detail a wide variety of applications of these new techniques ranging from mineral identification, mapping of expansive soils, land degradation, agricultural crops, natural vegetation and surface water quality. "Additional information on extras.springer.com""
This practical step-by-step guide describes the key geological field techniques needed by today's exploration geologists involved in the search for metallic deposits. The techniques described are fundamental to the collection, storage and presentation of geological data and their use to locate ore. This book explains the various tasks which the exploration geologist is asked to perform in the sequence in which they might be employed in an actual exploration project. Hints and tips are give. The steps are illustrated with numerous examples drawn from real projects on which the author has worked. The book emphasizes traditional skills and shows how they can be combined effectively with modern technological approaches.
The 2010 tsunamis generated in Haiti, Chile, and Indonesia caused various damage on the coasts. In the past, the 1755 Lisbon, 1964 Alaska, and 2003 Algeria earthquakes also generated damaging tsunamis. This volume contains an introduction and 18 papers, mostly presented at the 25th International Tsunami Symposium held 1-4 July 2011. They report the above tsunamis and discuss tsunami DART observations, warning systems, risk management in the Pacific, modelling of earthquake and landslide tsunamis, and probabilistic tsunami hazard assessment.
The book is an up-to-date basic reference for natural gas hydrate (NGH) in the Arctic Ocean. Geographical, geological, environmental, energy, new technology, and regulatory matters are discussed. The book should be of interest to general readers and scientists and students as well as industry and government agencies concerned with energy and ocean management. NGH is a solid crystalline material that compresses gas by about a factor of about 164 during crystallization from natural gas (mainly methane) - rich pore waters over time. NGH displaces water and may form large concentrations in sediment pore space. Its formation introduces changes in the geotechnical character of host sediment that allows it to be distinguished by seismic and electric exploration methods. The chemical reaction that forms NGH from gas and water molecules is highly reversible, which allows controlled conversion of the NGH to its constituent gas and water. This can be achieved rapidly by one of a number of processes including heating, depressurization, inhibitor injection, dissolution, and molecular replacement. The produced gas has the potential to make NGH a valuable unconventional natural gas resource, and perhaps the largest on earth. Estimates for NGH distribution, concentration, economic targets, and volumes in the Arctic Ocean have been carried out by restricting the economic target to deepwater turbidite sands, which are also sediment hosts for more deeply buried conventional hydrocarbon deposits. Resource base estimates are based on NGH petroleum system analysis approach using industry-standard parameters along with analogs from three relatively well known examples (Nankai-Japan, Gulf of Mexico-United States, and Arctic permafrost hydrate). Drilling data has substantiated new geotechnical-level seismic analysis techniques for estimating not just the presence of NGH but prospect volumes. In addition to a volumetric estimate for NGH having economic potential, a sedimentary depositional model is proposed to aid exploration in the five different regions around the deep central Arctic Ocean basin. Related topics are also discussed. Transport and logistics for NGH may also be applicable for stranded conventional gas and oil deposits. Arising from a discussion of new technology and methodologies that could be applied to developing NGH, suggestions are made for the lowering of exploration and capital expenses that could make NGH competitive on a produced cost basis. The basis for the extraordinarily low environmental risk for exploration and production of NGH is discussed, especially with respect to the environmentally fragile Arctic region. It is suggested that because of the low environmental risk, special regulations could be written that would provide a framework for very low cost and safe development.
The mining engineer and petrologist Frederick Henry Hatch (1864 1932) left the Geological Survey of Great Britain in 1892, relocating to South Africa. He worked for De Beers and with John Hays Hammond for Cecil Rhodes, finding important new gold fields in Matabeleland and Mashonaland. Control of the gold mines was a significant factor in the tension between Dutch and English settlers that would result in the Second Boer War in 1899. Prior to this, Rhodes and Hammond were behind the abortive Jameson Raid, but Hatch had returned to England briefly and was not implicated. This 1895 work, written with South African mining engineer J. A. Chalmers, reveals the extent of gold reserves in the Transvaal, and the engineering skills needed to exploit them. It deals with geological, economic and legal aspects of the mining industry, remaining of interest to historians of South Africa and the British Empire.
According to the conventional wisdom, we live in a post-industrial information age. This book, however, paints a different picture: We live in the age of oil. Petroleum fuels and feedstocks are responsible for much of what we take for granted in modern society, from chemical products such as fertilizer and plastics, to the energy that moves people and goods in a global economy. Oil is a nearly perfect fuel: Energy dense, safe to store, easy to transport, and mostly environmentally benign. Most importantly, oil has been cheap and abundant during the past 150 years. In 1998, two respected geologists, Colin Campbell and Jean Laherrere, published a detailed article announcing that the "end of cheap oil" would happen before 2010, which meant that the world would face a peak, or at least a plateau, in global daily oil production in the first decade of the new millennium. Today, two billion people under the age of 14 have lived the majority of their lives past the point when this century-long growth in oil supplies came to an end, which also marks the end of the first half of the age of oil. This transition has ushered in a new reality of high oil prices, stagnating oil supplies, and sluggish economies. In this book, a leading authority on energy explores the contributions and continuing legacy of Colin Campbell and Jean Laherrere, the two geologists who modified the terms of the debate about oil. The book provides a unique perspective and state-of-the-art overview of today's energy reality and its enormous economic and social implications. - Covers a topic that eclipses climate change as the most important but least understood challenge for contemporary society - Explores the works of Colin Campbell and Jean Laherrere, the leading authorities in the field of Peak Oil, authors of "The End of Cheap Oil" (Scientific American, 1998), and founding members of the Association for the Study of Peak Oil & Gas - Addresses a broad audience of scientists, engineers, and economists in a format that is accessible to the general public - Provides a complete overview of the basic geological, chemical, physical, economic and historical concepts that every oil consumer should understand - Presents the latest information on oil production, reserves, discoveries, prices, and fields in easy-to-understand graphs and plots
Oceanic basalts are the most abundant rock type found at the earth's surface, and as such they have been the subject of considerable research, particularly since the concept of sea-floor spreading became widely accepted. This book provides a review of these rocks, first dicussing how we sample the ocean floor and what we know about the structure of the oceanic crust, followed by an overview of the various regional settings (Pacific crust, Atlantic crust, marginal basins, seamounts and islands) and finally examines the main processes (and their interactions) which prevail during the generation and emplacement of oceanic basalt magmas. This is a volume for geologists, geochemists and geophysicists and a source of reference for advanced undergraduate students and postgraduates in these disciplines.
Robert Jameson (1774 1854) was a renowned geologist who held the chair of natural history at Edinburgh from 1804 until his death. A pupil of Gottlob Werner at Freiberg, he was in turn one of Charles Darwin's teachers. Originally a follower of Werner's influential theory of Neptunism to explain the formation of the earth's crust, and an opponent of Hutton and Playfair, he was later won over by the idea that the earth was formed by natural processes over geological time. He was a controversial writer, accused of bias towards those who shared his Wernerian sympathies such as Cuvier, while attacking Playfair, Hutton and Lyell. He built up an enormous collection of geological specimens, which provided the evidence for his System of Mineralogy, first published in 1808 and here reprinted from the second edition of 1816. Volume 1 deals with what Jameson terms 'earthy minerals', including diamonds, rubies and feldspar. |
You may like...
Geomorphological Mapping, Volume 15…
Mike Smith, James Griffiths
Hardcover
R3,778
Discovery Miles 37 780
Coal and Coalbed Gas - Future Directions…
Romeo M Flores, Tim A. Moore
Paperback
R3,192
Discovery Miles 31 920
European Glacial Landscapes - Maximum…
David Palacios, Philip D Hughes, …
Paperback
R3,349
Discovery Miles 33 490
Discovery of Oyu Tolgoi - A Case Study…
Sergei Diakov, Samand Sanjdorj, …
Paperback
R3,483
Discovery Miles 34 830
Innovative Exploration Methods for…
A. K. Moitra, Jayanta Bhattacharya, …
Paperback
R3,331
Discovery Miles 33 310
Geological Controls for Gas Hydrates and…
Sanjeev Rajput, N K Thakur
Paperback
Energy Geotechnics - SEG-2018
Alessio Ferrari, Lyesse Laloui
Hardcover
R7,044
Discovery Miles 70 440
|