Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Environmental engineering & technology > Sanitary & municipal engineering > Water supply & treatment > General
This title offers more than 100 papers originating in 20 countries, covering research on a widening range of methods for recharge enhancement and groundwater quality protection and improvement. These include: bank filtration; aquifer storage and recovery; and soil aquifer treatment, as well as rainwater harvesting and pond infiltration. The emphasis is on understanding subsurface process to improve siting, design and operation and to facilitate use of stormwater and reclaimed water, particularly in water-scarce areas.
With contributions from world-renowned experts in the field, this book explores developments in the transport kinetics, seasonal cycling, accumulation, geochemistry, transformation, and toxicology of arsenic. It details advances in the prevention and control of arsenic and arsenic compounds in the air, soil, and water and offers analytical methods for the detection and study of arsenic in the environment and human body. Providing bioremediation techniques for effective treatment of contaminated water supplies, the book discusses factors that influence the removal of arsenic from water as well as diurnal and seasonal variations in the arsenic concentration of surface water supplies.
Cryptosporidium, in its various forms, is a widely recognised cause of outbreaks of waterborne disease. Regulatory bodies worldwide are increasingly requiring the development of "fit-for-purpose" detection methods for this protozoan parasite, but analysis is often problematic. Bringing together international academic and industry-based experts, this book provides a comprehensive review of the current state of analytical techniques for the detection of Cryptosporidium, as well as looking at likely future developments. In particular, the issues of species identification and oocyst viability are addressed. Quality assurance issues and potential problems associated with the new Cryptosporidium regulations are also highlighted. The extent of the perceived problems and the regulatory backdrop against which the analysis must be carried out are also discussed. Scientists in the water industry, environmental testing laboratories, researchers, consultants, environmental health professionals, food manufacturers and regulatory or environmental bodies are amongst the many who should read this book. In addition, anyone with an interest in microbiological challenges and problem-solving will welcome the coverage.
Sludge treatment and disposal used to be considered part of water and wastewater treatment, rather than a separate subject, but is now seen as an independent field of study, research and development. This book is the first text and reference volume on the subject, aiming to provide a comprehensive coverage of basic principles, methods and the advanced practices of sludge treatment and its safe disposal. The book focuses on those aspects of sludge treatment and disposal, particularly in relation to the environment and economy. Based on its inter-disciplinary approach, comprehensive scope and practical case studies and technical illustrations, this book can be recommended as a resource for students, teachers and practising engineers working in the area of water and wastewater treatment, and sludge treatment and disposal in particular.
If you work in the water quality management field, you know the challenges of monitoring and controlling pollutants in our water supply. The increasing problem of agricultural nonpoint source pollution requires complex solutions. Agricultural Nonpoint Source Pollution: Watershed Management and Hydrology covers the latest techniques and methods of managing large watershed areas, with an emphasis on controlling non-point source pollution, especially from agricultural run-off.
As water demand has increased globally and resources have become more limited because of physical scarcity, over-exploitation and pollution, it has been necessary to develop more options for water supplies. These options include the production at large scale of high-quality reused water from municipal sources for potable uses. Their economic, social and environmental benefits have been many as they have addressed supply scarcity, efficient resource use and environmental and public health considerations. This book includes discussions on potable water reuse history; emerging contaminants and public health; public-private partnerships in the water reuse sector; regulatory frameworks for reused water in the United States and Europe; experiences in Australia, China in general and Beijing in particular, Singapore and Windhoek; narratives and public acceptance and perceptions of alternative water sources. The main constraints on implementation of water reuse projects in different parts of the world seem to have been lack of full public support due to perceived health hazards and environmental impacts. A main handicap has been that governments and water utilities have been slow to understand public concerns and perceptions. After several backlashes, public information, communication and awareness campaigns, broader participation and educational programmes have become integral parts of development policy and decision-making frameworks.
This is the only book series devoted to explaining the full range
of specialized areas required of water and wastewater plant
operators. Each volume is designed to give operators the basic
knowledge of a subject needed for certification, licensure, and
improved job performance. Checkpoints, self-tests and a final
examination with questions based on actual operator certification
exams provide a practical review. All books are clearly illustrated
with key ideas and highlighted points throughout.
Urban informal settlements or slums are growing rapidly in cities in sub-Saharan Africa. Most often, a sewer system is not present and the commonly-used low-cost onsite wastewater handling practices, typically pit latrines, are frequently unplanned, uncontrolled and inefficient. Consequently, most households dispose of their untreated or partially treated wastewater on-site, generating high loads of nutrients to groundwater and streams draining these areas. However, the fate of nutrients in urban slums is generally unknown. In excess, these nutrients can cause eutrophication in downstream water bodies. This book provides an understanding of the hydro-geochemical processes affecting the generation, fate and transport of nutrients (nitrogen and phosphorus) in a typical urban slum area in Kampala, Uganda. The approach used combined experimental and modeling techniques, using a large set of hydrochemical and geochemical data collected from shallow groundwater, drainage channels and precipitation. The results show that both nitrogen-containing acid precipitation and domestic wastewater from slum areas are important sources of nutrients in urban slum catchments. For nutrients leaching to groundwater, pit latrines retained over 80% of the nutrient mass input while the underlying alluvial sandy aquifer was also an effective sink of nutrients where nitrogen was removed by denitrification and anaerobic oxidation and phosphorus by adsorption to calcite. In surface water, nutrient attenuation processes are limited. This study argues that groundwater may not be important as regards to eutrophication implying that management interventions in slum areas should primarily focus on nutrients released into drainage channels. This research is of broad interest as urbanization is an ongoing trend and many developing countries lack proper sanitation systems.
The rate of global increase in water abstraction for irrigation has been declining since the 1970's due to declining potentials for large and medium-scale irrigation developments, and is expected to further decline in the next decades. As such the significant proportion of the expected increase in production would have to be supplied from existing irrigated and /or cultivated lands. This in turn could be achieved by enhancing land and water productivity through improved performance and optimal operation and maintenance. With less than 15% of over 5 million ha irrigation potential harnessed, irrigation devolvement in Ethiopia remained low. Over 70% of the developed irrigation in the country belongs to small-scale irrigation serving smallholder farmers. While accelerated development of new irrigation, particularly of large and medium-scale schemes is relevant in Ethiopia, ensuring the performance and sustainability of existing schemes is also equally important. The existing irrigation schemes in Ethiopia are generally characterized by an overall performance and technical sustainability levels of below expectation. This thesis evaluates the performance of two large-scale (Wonji-Shoa and Metahara) and two community-managed (Golgota and Wedecha) irrigation schemes located in the Awash River Basin of Ethiopia. The study focussed on hydraulic/water delivery performance in the large-scale schemes, and on comparative and internal irrigation service (utility) evaluation in the community-managed schemes. Water delivery performance was evaluated using routine data and hydrodynamic modelling. Farmers' utility was evaluated using qualitative responses of water users. Major performance challenges in each category of schemes were addressed and operational/water management options for improvement were identified.
Africa has been severely affected by droughts in the past, contributing to food insecure conditions in several African countries. In view of the (even more) severe drought conditions and water shortage that may be expected in sub-Saharan Africa in the coming years, efforts should focus on improving drought management by ameliorating resilience and preparedness to drought. This study contributes to the development of a modelling framework for hydrological drought forecasting in sub-Saharan Africa as a step towards an effective early warning system. The proposed hydrological drought forecasting system makes use of a hydrological model that was found to be suitable for drought forecasting in Africa and could represent the most severe past droughts in the Limpopo Basin. The modelling results showed that there is an added value in computing indicators based on the hydrological model for the identification of droughts and their severity. The proposed seasonal forecasting system for the Limpopo Basin was found to be skilful in predicting hydrological droughts during the summer rainy season. The findings showed that the persistence of the initial hydrological conditions contribute to the predictability up to 2 to 4 months, while for longer lead times the predictability of the system is dominated by the meteorological forcing. An effective drought forecasting and warning system will hopefully contribute to important aspects in the region such as water security, food security, hazard management, and risk reduction.
Reservoir operation is a multi-objective optimization problem, and is traditionally solved with dynamic programming (DP) and stochastic dynamic programming (SDP) algorithms. The thesis presents novel algorithms for optimal reservoir operation, named nested DP (nDP), nested SDP (nSDP), nested reinforcement learning (nRL) and their multi-objective (MO) variants, correspondingly MOnDP, MOnSDP and MOnRL. The idea is to include a nested optimization algorithm into each state transition, which reduces the initial problem dimension and alleviates the curse of dimensionality. These algorithms can solve multi-objective optimization problems, without significantly increasing the algorithm complexity or the computational expenses. It can additionally handle dense and irregular variable discretization. All algorithms are coded in Java and were tested on the case study of the Knezevo reservoir in the Republic of Macedonia. Nested optimization algorithms are embedded in a cloud application platform for water resources modeling and optimization. The platform is available 24/7, accessible from everywhere, scalable, distributed, interoperable, and it creates a real-time multiuser collaboration platform. This thesis contributes with new and more powerful algorithms for an optimal reservoir operation and cloud application platform. All source codes are available for public use and can be used by researchers and practitioners to further advance the mentioned areas.
Selenium (Se) and tellurium (Te) are metalloids of commercial interest due to their physicochemical properties. The water soluble oxyanions of these elements (selenite, selenate, tellurite and tellurate) exhibit high toxicities; hence, their release in the environment is of great concern. This study demonstrates the potential use of fungi as Se- and Te-reducing organisms. The response of Phanerochaete chrysosporium to the presence of selenite and tellurite was evaluated, as well as its potential application in wastewater treatment and production of nanoparticles. Growth stress and morphological changes were induced in P. chrysosoporium when exposed to selenite and tellurite. Synthesis of Se0 and Te0 nanoparticles entrapped in the fungal biomass was observed, as well as the formation of unique Se0-Te0 nanocomposites when the fungus was cultivated concurrently with Se and Te. The response of P. chrysosporium to selenite exposure was investigated in different modes of fungal growth (pellets and biofilm). A bioprocess for selenite removal and Se0 nanoparticles recovery using an up-flow fungal pelleted reactor was developed. 70% selenite removal (10 mg Se L-1 d-1) was achieved under continuous mode. The use of Se0 nanoparticles immobilized in P. chrysosporium pellets as a new sorbent material for the removal of heavy metals from wastewater was demonstrated.
Seawater desalination is a rapidly growing coastal industry that is increasingly threatened by algal blooms. Depending on the severity of algal blooms, desalination systems may be forced to shut down because of clogging and/or poor feed water quality. To maintain stable operation and provide good feed water quality to seawater reverse osmosis (SWRO) systems, ultrafiltration (UF) pre-treatment is proposed. This research focused on assessing the ability of UF and other pre-treatment technologies to reduce biofouling in SWRO systems. An improved method to measure bacterial regrowth potential (BRP) was developed and applied at laboratory, pilot and full scale to assess the ability of conventional UF (150 kDa) and tight UF (10 kDa) alone and in combination with a phosphate adsorbent to reduce regrowth potential and delay the onset of biofouling in SWRO. The improved bacterial regrowth potential method employs a natural consortium of marine bacteria as inoculum and flow cytometry. The limit of detection of the BRP method was lowered to 43,000 +/- 12,000 cells/mL, which is equivalent to 9.3 +/- 2.6 g-Cglucose/L. The reduction in bacterial regrowth potential after tight UF (10 kDa) was 3 to 4 times higher than with conventional UF (150 kDa). It was further reduced after the application of a phosphate adsorbent, independent of pore size of the UF membrane. Pilot studies demonstrated that the application of tight UF (10 kDa) coupled with a phosphate adsorbent consistently lowered the bacterial regrowth potential and no feed channel pressure drop increase was observed in membrane fouling simulators (MFS) over a period of 21 days. The study also showed that non-backwashable fouling of UF membranes varied strongly with the type of algal species and the algal organic matter (AOM) they release. The presence of polysaccharide (stretching -OH) and sugar ester groups (stretching S=O) was the main cause of non-backwashable fouling. In conclusion, this study showed that an improved BRP method is suitable for the assessment of SWRO pre-treatment systems and it can be a useful tool to develop potential strategies to mitigate biofouling and improve the sustainability of SWRO systems.
Lack of clean water is one of the most important public health challenges in less developed communities. Due to insufficient financial and technical resources in places in need, development of low-cost water treatment technologies can play a key role in sustainable water provision. In this context, this PhD research investigated the removal of pathogenic microorganisms in simple sand filtration set-ups supplemented with low-cost adsorbents (hydrochar) produced via hydrothermal carbonization of biowastes. Two types of hydrochar, derived from hydrothermal carbonization of agricultural residue of maize and stabilized sewage sludge from wastewater treatment plant, were evaluated as adsorbents for Escherichia coli removal in saturated sand columns. The removal efficiency of sand columns amended with these adsorbents improved from 20-70% to ~90 % by alkali activation carried out in room temperatures using 1 M potassium hydroxide solution. This PhD research also demonstrates the removal of human pathogenic viruses in sand columns supplemented with hydrochar adsorbents derived from stabilized sewage sludge and fresh swine waste. In order to enumerate human pathogenic rotavirus and adenovirus in virus removal experiments, low-cost polymerase chain reaction assays were developed under this PhD study. These assays show a competent performance in analyzing virus concentrations in both laboratory and environmental samples. Amendment with either hydrochar (without alkali activation) in sand columns was able to remove more than 99% of both viruses.
This reference/text offers a systematic and unified approach to the classical theories and recent techniques of multilayered aquifer systems-clarifying governing principles and facilitating industrial problem solving. Uses the automated numerical Laplace inversion procedure to simplify mathematical material Multilayered Aquifer Systems progresses from the non-leaky and leaky aquifers of Theis, Cooper-Jacob, Jacob-Lohman, Papadopulos-Cooper, Hantush-Jacob, and Hantush-Neuman to the multilayer aquifer theory of Neuman-Witherspoon-Herrera treats sensitivity and stochastic analyses utilizes the latest computer methods for parameter determination examines groundwater with fractured aquifers encourages application of theories by supplying specialized tools based on Fortran programs and macro packages for MathematicaT and much more Referenced and illustrated with over 860 literature citations, drawings, and tables, Multilayered Aquifer Systems is an excellent reference and self-study companion for civil, environmental, groundwater, water supply and resource, and agricultural engineers; hydrogeologists and geologists; and an invaluable text for graduate and continuing-education students in these disciplines.
The main objective of this research was to optimize the electron donor supply in sulphate reducing bioreactors treating sulphate rich wastewater. Two types of electron donor were tested: lactate and slow release electron donors such as carbohydrate based polymers and lignocellulosic biowastes. Biological sulphate reduction was evaluated in different bioreactor configurations: the inverse fluidized bed, sequencing batch and batch reactors. The reactors were tested under steady-state, high-rate and transient-state feeding conditions of electron donor and acceptor, respectively. The results showed that the inverse fluidized bed reactor configuration is robust and resilient to transient and high-rate feeding conditions at a hydraulic retention time as low as 0.125 d. The biological sulphate reduction was limited by the COD:sulphate ratio (< 1.7). The results from artificial neural network modelling showed that the influent sulphate concentrations synergistically affected the COD removal efficiency and the sulphide production. Concerning the role of electron donors, the slow release electron donors allowed a biological sulphate reduction > 82% either using carbohydrate based polymers or lignocellulosic bio-wastes, in batch bioreactors. The biological sulphate reduction was limited by the hydrolysis-fermentation rate and by the complexity of the slow release electron donors.
Presenting a useful reference to the current state of membrane technology and its likely future growth, this book covers all aspects of the technology and its applications in the water industry. Drawing on the experience of international experts, Membrane Technology in Water and Wastewater Treatment encompasses many practical applications of specific membranes, including MF, UF, NF, RO and EDR, in the treatment of ground and surface water, backwash water, seawater, and industrial and domestic wastewater. Novel applications, process enhancements and the latest systems are also discussed. This book is an excellent guide to membrane technology and will be of great interest to water companies, industrialists, legislative bodies and anyone with an interest in the technology or its applications.
At a time of great turmoil and crisis, environmentally, socially and politically, water has emerged as a topic of huge global concern. Moreover, many argue that what is needed in order to change our relationship with the environment is a cultural paradigm shift. To this end, this volume brings together diverse approaches to exploring human relationships with the watery world and the other living things that rely upon it. Through exploring multiple creative ways of engaging with water and people, the volume adds to the current zeitgeist of writing about water by expanding the discussion about this vital substance and how, as humans, we relate to it. Chapters focus on creative explorations and explorations of creativity in relation to developing these understandings, including concepts such as hydrocitizenship and responses to drought and flooding. Drawing on the in-depth research and experience of arts practitioners including participatory artists, as well as academics from a variety of fields including geography, anthropology, health studies and environmental humanities, the book provides a rich and multidisciplinary perspective on water and creative ways of engaging and understanding human-water relationships. It represents a valuable source and inspiration for academics, arts practitioners and those involved in environmental policy and governance.
This translation of "Guide technique des bassins de retenue d'eaux pluviales," Paris 1994, provides information about planning, construction, maintenance and management, and costs of stormwater retention basins.
An environmental assessment must be performed whenever a property transaction takes place. Those who donít may find themselves responsible for the past misdeeds of others. This book contains contributions by professionals from various locations who use Strategic Environmental Assessment (SEA) as a tool applied to water management issues.
This workbook is a companion to Applied Math for Water Plant Operators (ISBN: 9780877628743) and part of the Applied Math for Water Plant Operators Set (ISBN: 9781566769884). It contains self-teaching guides for all water treatment calculations, skill checks, hundreds of worked examples, and practice problems. |
You may like...
Post Treatments of Anaerobically Treated…
Vinay Kumar Tyagi, Abid Ali Khan, …
Paperback
R3,770
Discovery Miles 37 700
Implementing the Water-Energy-Food…
Cesar Carmona-Moreno, E. Crestaz, …
Paperback
R1,158
Discovery Miles 11 580
Globalization of Water Governance in…
Vishal Narain, Chanda Gurung Goodrich, …
Hardcover
R3,877
Discovery Miles 38 770
Novel Solutions to Water Pollution
Satinda Ahuja, Kiril Hristovski
Hardcover
R5,417
Discovery Miles 54 170
Water Governance and Civil Society…
N.C. Narayanan, S. Parasuraman, …
Hardcover
R2,532
Discovery Miles 25 320
Recent Advances in Disinfection…
Tanju Karanfil, Bill Mitch, …
Hardcover
R5,883
Discovery Miles 58 830
Land Use and Water Quality: The impacts…
Puangrat Kajitvichyanukul, Brian Arcy
Paperback
R3,035
Discovery Miles 30 350
|