![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Environmental engineering & technology > Sanitary & municipal engineering > Water supply & treatment > General
Headwaters are fragile environments threatened by anthropogenic actions. The regeneration of headwaters calls for a practical approach through integrated environmental management. This book discusses various issues concerning headwater regions of the world under wide-ranging themes: climate change impacts, vegetal cover, sub-surface hydrology, catchment and streamflow hydrology, pollution, water quality and limnology, remote sensing and GIS, environmental impact assessment and mitigation, socio-economic impacts, public participation, education and management, and integrated watershed management. This book aims to bring about an awareness in sustainable regeneration of headwater regions and particularly highlighting the problems of environmental management in highlands and headwaters. These regions consist of great reserves of natural resources which need to be exploited and managed sustainably.
The series Advances in Industrial Control aims to report and encourage technology transfer in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. New theory, new controllers, actuators, sensors, new industrial processes, computer methods, new applications, new philosophies ..., new challenges. Much of this development work resides in industrial reports, feasibility study papers and the reports of advanced collaborative projects. The series offers an opportunity for researchers to present an extended exposition of such new work in all aspects of industrial control for wider and rapid dissemination. The water and wastewater industry has undergone many changes in recent years. Of particular importance has been a renewed emphasis on improving resource management with tighter regulatory controls setting new targets on pricing, industry efficiency and loss reduction for both water and wastewater with more stringent environmental discharge conditions for wastewater. Meantime, the demand for water and wastewater services grows as the population increases and wishes for improved living conditions involving, among other items, domestic appliances that use water. Consequently, the installed infrastructure of the industry has to be continuously upgraded and extended, and employed more effectively to accommodate the new demands, both in throughput and in meeting the new regulatory conditions. Investment in fixed infrastructure is capital-intensive and slow to come on-stream. One outcome of these changes and demands is that the industry is examining the potential benefits of, and in many cases using, more advanced control systems.
There is no more fundamental resource than water. The basis of all life, water is fast becoming a key issue in today's world, as well as a source of conflict. This fascinating book, which sets out many of the ingenious methods by which ancient societies gathered, transported and stored water, is a timely publication as overextraction and profligacy threaten the existence of aquifers and watercourses that have supplied our needs for millennia. It provides an overview of the water technologies developed by a number of ancient civilizations, from those of Mesopotamia and the Indus valley to later societies such as the Mycenaeans, Minoans, Persians, and the ancient Egyptians. Of course, no book on ancient water technologies would be complete without discussing the engineering feats of the Romans and Greeks, yet as well as covering these key civilizations, it also examines how ancient American societies from the Hohokams to the Mayans and Incas husbanded their water supplies. This unusually wide-ranging text could offer today's parched world some solutions to the impending crisis in our water supply. "This book provides valuable insights into the water technologies developed in ancient civilizations which are the underpinning of modern achievements in water engineering and management practices. It is the best proof that "the past is the key for the future." Andreas N. Angelakis, Hellenic Water Supply and Sewerage Systems Association, Greece "This book makes a fundamental contribution to what will become the most important challenge of our civilization facing the global crisis: the problem of water. Ancient Water Technologies provides a complete panorama of how ancient societies confronted themselves with the management of water. The role of this volume is to provide, for the first time on this issue, an extensive historical and scientific reconstruction and an indication of how traditional knowledge may be employed to ensure a sustainable future for all." Pietro Laureano, UNESCO expert for ecosystems at risk, Director of IPOGEA-Institute of Traditional Knowledge, Italy
This ground-breaking work is the first to cover the fundamentals of hydrogeophysics from both the hydrogeological and geophysical perspectives. Authored by leading experts and expert groups, the book starts out by explaining the fundamentals of hydrological characterization, with focus on hydrological data acquisition and measurement analysis as well as geostatistical approaches. The fundamentals of geophysical characterization are then at length, including the geophysical techniques that are often used for hydrogeological characterization. Unlike other books, the geophysical methods and petrophysical discussions presented here emphasize the theory, assumptions, approaches, and interpretations that are particularly important for hydrogeological applications. A series of hydrogeophysical case studies illustrate hydrogeophysical approaches for mapping hydrological units, estimation of hydrogeological parameters, and monitoring of hydrogeological processes. Finally, the book concludes with hydrogeophysical frontiers, i.e. on emerging technologies and stochastic hydrogeophysical inversion approaches.
The present work reflects a multi-disciplinary effort to address the topic of confined hydrosystems developed with a cross-fertilization panel of physics, chemists, biologists, soil and earth scientists. Confined hydrosystems include all situations in natural settings wherein the extent of the liquid phase is limited so that the solid-liquid and/or liquid-air interfaces may be critical to the properties of the whole system. Primarily, this so-called "residual" solution is occluded in pores/channels in such a way that decreases its tendency to evaporation, and makes it long-lasting in arid (Earth deserts) and hyper-arid (Mars soils) areas. The associated physics is available from domains like capillarity, adsorption and wetting, and surface forces. However, many processes are still to understand due to the close relationship between local structure and matter properties, the subtle interplay between the host and the guest, the complex intermingling among static reactivity and migration pathway. Expert contributors from Israel, Russia, Europe and US discuss the behaviour of water and aqueous solutes at different scale, from the nanometric range of carbon nanotubes and nanofluidics to the regional scale of aquifers reactive flow in sedimentary basins. This scientific scope allowed the group of participants with very different background to tackle the confinement topic at different scales. The book is organized according to four sections that include: i) flow, from nano- to mega-scale; ii) ions, hydration and transport; iii) in-pores/channels cavitation; iv) crystallization under confinement. Most of contributions relates to experimental works at different resolution, interpreted through classic thermodynamics and intermolecular forces. Simulation techniques are used to explore the atomic scale of interfaces and the migration in the thinnest angstrom-wide channels.
Excessive groundwater pumping, groundwater contamination, and subsurface thermal anomalies have occurred frequently in Asian coastal cities, greatly disturbing the urban aquifer and the subsurface environment. In this volume, the relationship between the stage of a city's development and subsurface environment issues have been explored. Intensive field surveys were done in Tokyo, Osaka, Seoul, Taipei, Bangkok, Jakarta, and Manila. New, advanced methods, including satellite, tracer techniques, and the social economy model, were developed to evaluate subsurface conditions. Groundwater storage and groundwater recharge rates, as well as the accumulation and transport of pollutants, have been compiled as integrated indices of natural capacities under climate and social changes, and used to evaluate the vulnerability risk for all cities. The indices have been made on a yearly basis for seven cities for a century (1900-2000). Using these indicators it is now possible to manage groundwater resources in a sustainable fashion. This volume is indispensable to researchers in hydrology, coastal oceanography, civil engineering, urban geography, social economy, climatology, geothermics, and urban management.
This book presents papers from an international conference, held in Bonn, Germany in February 2005, that dealt with integrated water resources management in industrialized and developing countries. The papers detail such emerging concepts as blue and green water, virtual water, the water footprints of nations, multi-agent modeling, linkages between water and biodiversity, and social learning and adaptive management.
The first International Conference on Hydraulic Design in Water Resources Engineering held at Southampton University in 1984 brought together engineers interested in channels and channel control structures. It was well attended, very successful and generated papers relating to control and diversion structures, sediment control facilities for headworks and intakes, canals under quasi-steady flow conditions, computer simulation of irrigation and drainage canal systems under unsteady flow conditions, and sediment problems in rivers and the effects of engineering works on the regime of rivers. The success of the first meeting was a major factor in deciding to reconvene the Conference in April 1986, also at Southampton University. The second conference is concerned with the design, constructions and operation of land drainage systems and the wealth of papers received for presentation is an indication of how much this subject has developed in the last few decades. The Conference is intended to bring together as much information as possible in the field of Land Drainage together with forecasts of future developments in this important subject. The Proceedings will provide a unique reference and state-of-the-art presentation to all interested in Land Drainage. The Proceedings incorporate the text of a keynote lecture given by W. H. van der Molen, an eminent researcher. His participation added to the prestige of the Conference and the Editors would like to thank him most sincerely for his contribution.
Modelling of hydrological rainfall-runoff processes is facilitated by the application of the systemtheoretical approach to linear, nonlinear and stochastic models. To this purpose, the variables involved in methods for determinating areal precipitation and baseflow separation are discussed. The convolution theorem in the theory of linear systems and the mathematical transform technique (Laplace-, Z-transformation) are used to identify characteristics of the watershed, and simulate hydrological processes. To support the calculation of model output functions, computer programs are included in the text. This volume is suitable as a text for hydrology courses at universities or engineering academies.
A variety of optimization and simulation models are now com- monly used to help water resource planners and managers identify, evaluate and predict themultiple impacts from va- rious actions or decisions one can make regarding the deve- lopment and management of a region's water resources. Cur- rent developments in computer technology are making it pos- sible to link these models to programs that provide an in- terface betwe- en the decision maker and their models and compu- ters. The volume discusses how these so-called deci- sion support systems can be best developed and used bythose involved in water resources planning and management.
The concern over the entry of agrochemicals and other xenobiotics into drinking water resources and over the general quality of drinking water is increasing. The topic of water quality and water supply will continue to be of great interest during the next two decades in developed as well as in developing countries. The new volume discusses in an authoritative way the key issues of drinking water and its often necessary treatment.
A state-of-the-art review of scientific knowledge on the environmental risk of ocean discharge of produced water and advances in mitigation technologies. In offshore oil and gas operations, produced water (the water produced with oil or gas from a well) accounts for the largest waste stream (in terms of volume discharged). Its discharge is continuous during oil and gas production and typically increases in volume over the lifetime of an offshore production platform. Produced water discharge as waste into the ocean has become an environmental concern because of its potential contaminant content. Environmental risk assessments of ocean discharge of produced water have yielded different results. For example, several laboratory and field studies have shown that significant acute toxic effects cannot be detected beyond the "point of discharge" due to rapid dilution in the receiving waters. However, there is some preliminary evidence of chronic sub-lethal impacts in biota associated with the discharge of produced water from oil and gas fields within the North Sea. As the composition and concentration of potential produced water contaminants may vary from one geologic formation to another, this conference also highlights the results of recent studies in Atlantic Canada.
Open-channel hydraulics are described by hyperbolic equations, derived from laws of conservation of mass and momentum, called Saint-Venant equations. In conjunction with hydraulic structure equations these are used to represent the dynamic behavior of water flowing in rivers, irrigation canals, and sewers. Building on a detailed analysis of open-channel flow modeling, this monograph constructs control design methodologies based on a frequency domain approach. In practice, many open-channel systems are controlled with classical input-output controllers that are usually poorly tuned. The approach of this book, fashioning pragmatic engineering solutions for the control of open channels is given rigorous mathematical justification. Once the control objectives are clarified, a generic control design method is proposed, first for a canal pool, and then for a whole canal. The methods developed in the book have been validated on several canals of various dimensions up to a large scale irrigation canal.
Living in biofilms is the common way of life of microorganisms, transiently immobilized in their matrix of extracellular polymeric substances (EPS), interacting in many ways and using the matrix as an external digestion and protection system. This is how they have organized their life in the environment, in the medical context and in technical systems - and has helped make them the oldest, most successful and ubiquitous form of life. In this book, hot spots in current biofilm research are presented in critical and sometimes provocative chapters. This serves a twofold purpose: to provide an overview and to inspire further discussions. Above all, the book seeks to stimulate lateral thinking.
It is a peculiarity of Cambridge that in one of the principal streets, Trumpington Street, there is a runnel of fresh water, called Hobson's Conduit, on either side of the road (a similar stream in St Andrew's Street was covered over in the 1990s.) These streams form part of a system of water supply named after Thomas Hobson (1545 1631), the Cambridge carrier, from whom we get the expression 'Hobson's Choice', and for who the young John Milton wrote two verse epitaphs, reproduced in this work. For 250 years, Hobson's Conduit provided the principal supply of drinking water for the centre of the city, after Andrew Perne (1519 89), Vice-Chancellor of the University, persuaded a number of patrons, including Hobson, to subscribe towards the project. First published in 1938, this history of Cambridge's ancient urban watercourse was written by W. D. Bushell, one of the trustees of the Hobson's Conduit Trust.
Surfactants and Colloids in the Environment presents the
proceedings of the General Meeting of the German Colloid Society
(Kolloid-Gesellschaft) held at the Research Center of Julich (KFA),
FRG, in 1993.
The factors affecting water quality are many: The increasing buying power and health concerns of the world population contribute to the creation of new products whose production and disposal lead to the release of chemicals harmful to the environment; the ever-growing world population requires a steady food supply, which increases the pressure to use even more chemicals to control various crop pests; and due to climate change, head waters, rivers, and oceans are becoming increasingly warmer, acidic, and eutrophic as the result of carbod dioxide overload. Using specific examples, Water Quality and Resource Management will address the many challenges of providing clean water to the growing world population. It will also discuss the new technologies that are being developed, for example, to treat and reuse waste waters, and the innovative monitoring approaches that help scientists to assess water quality risks. Such risk assessments are urgently needed to help draft legislations and allow enforcement to ensure accessability to quality water for all. The structure of the book will be the following: Each chapter will provide information about a specific water environment and the challenges it faces. This will be followed by discussion of the pollution effects and actions taken to redress the situation. Finally, future trends will be discussed.
Mathematical models are the effective tool to solve different tasks predicting pollutant movement. The finite difference method is the oldest, but still remains widely used in hydrogeological practice. However, this method is not very useful to construct the new transport models because it cannot approximate the shape of remediation elements exactly. Therefore the book is concerned with the FEM (Finite Element Method) and BEM (Boundary Element Method), and also with the comparison of advantages of these methods in groundwater hydrology. The combination of the BEM and the random-walk particle tracking method, which seems to be a very useful tool to model the spread of pollution in groundwater, are also presented. The computer programmes have been developed on the basis of the theoretical backgrounds of these methods. They use the Visual C++ programming language for Windows 95/NT platform and will be included in the book.
During the last 10 years, there has been a `revolution' in ecosystem modelling. The generality and predictive power of our models have increased in a way that was inconceivable 10 years ago. This book describes a new generation of practically useful models that predict as well as one can measure - if one measures well. And yet, they are driven by readily available driving variables and have a general structure that applies to most types of pollutants in aquatic systems. The major reason for this development is, in fact, the Chernobyl accident. Large quantities of radiocesium were released in April/May 1986 as a pulse. To follow the pulse of radiocesium through ecosystem pathways has meant that important fluxes and mechanisms, i.e., ecosystem structures, have been revealed. It is important to stress that many of these new structures and equations are valid not just for radiocesium, but for most types of contaminants, e.g. for metals, nutrients and organics. This means that the models, methods (of building and testing models) and equations described in this book for lakes and coastal areas should be of great interest also to other ecosystem modellers. This book will be of considerable interest to: students in radioecology, geosciences and biology; environmental engineers; consultants; administrators and scientists interested in the spread, biouptake and ecosystem effects of chemical pollutants in aquatic ecosystems.
The development of water resources has proceeded at an amazing speed around the world in the last few decades. The hydraulic engineer has played his part: in constructing much larger artificial channels than ever before, larger and more sophisticated control structures, and systems of irrigation, drainage and water supply channels in which the flow by its nature is complex and unsteady requiring computer-based techniques at both the design and operation stage. It seemed appropriate to look briefly at some of the developments in hydraulic design resulting from this situation. Hence the idea of the Conference was formed. The Proceedings of the Conference show that hydraulic engineers have been able to acquire a very substantial base of design capability from the experience of the period referred to. The most outstanding development to have occurred is in the combination of physical and mathematical modelling, which in hydraulic engineering has followed a parallel path to that in other branches of engineering science. The Proceedings of this Conference will give to the reader an awareness of the current state of hydraulic design in open channel flow and open channel control structures. K.V.H. Smith Editor 1. CONTROL AND DIVERSION STRUCTURES 1-3 FACTORS AFFECTING BRINK DEPTH IN RECTANGULAR OVERFALLS G.C. Christodoulou, G.C. Noutsopoulos and S.A. Andreou Dept. of Civil Engineering, National Technical Univ. of Athens, Greece.
This book results from a NATO Advanced Research Workshop titled "Technological Innovations in CBRNE Sensing and Detection for Safety, Security, and Sustainability" held in Yerevan, Armenia in 2012. The objective was to discuss and exchange views as to how fusion of advanced technologies can lead to improved sensors/detectors in support of defense, security, and situational awareness. The chapters range from policy and implementation, advanced sensor platforms using stand-off (THz and optical) and point-contact methods for detection of chemical, nuclear, biological, nuclear and explosive agents and contaminants in water, to synthesis methods for several materials used for sensors. In view of asymmetric, kinetic, and distributed nature of threat vectors, an emphasis is placed to examine new generation of sensors/detectors that utilize an ecosystems of innovation and advanced sciences convergence in support of effective counter-measures against CBRNE threats. The book will be of considerable interest and value to those already pursuing or considering careers in the field of nanostructured materials, and sensing/detection of CBRNE agents and water-borne contaminants. For policy implementation and compliance standpoint, the book serves as a resource of several informative contributions. In general, it serves as a valuable source of information for those interested in how nanomaterials and nanotechnologies are advancing the field of sensing and detection using nexus of advanced technologies for scientists, technologists, policy makers, and soldiers and commanders.
Sustainable technologies for water supply are urgently needed if water has to be supplied to billions of less fortunate people with inadequate access to water. These technologies must be simple, less expensive, less energy intensive, and easy to maintain for their adaptation among the poor masses. Four appropriate technologies are discussed here: solar pasteurization, membrane desalination, natural filtration (riverbank filtration), and solar distillation. Solar pasteurization can be a useful means of producing water at remote, but sunny locations where fuel may not be easily available for boiling water. Membrane desalination will remain as a viable means of drinking water production for individual households to large communities. Various membrane filtration techniques as well as the means to "democratize" membrane filtration have been presented. Riverbank filtration is a "natural" filtration technique where drinking water is produced by placing wells on the banks of rivers. The riverbed/bank material and the underlying aquifer act as natural filters to remove pollutants from river water. Solar distillation can be a viable method of drinking water production for individual households to small communities without the input of external energy. Sustainability framework and technology transfer are discussed through transdisciplinary analysis.
There is an extremely voluminous literature on radioactive waste and its disposal, much in the form of government-sponsored research reports. To wade through this mountain of literature is indeed a tedious task, and it is safe to speculate that very few, if any, individuals have the time to examine each report that has been issued during the preceding ten years. This book attempts to summarize much of this literature. Further, many workers in the geosciences have not received training in the nuclear sciences, and many nuclear scientists could be better versed in geology. In this book an attempt is made to cover some background material on radioactive wastes and geotoxicity that may not be an integral part of a geologist's training, and background material on geology and geochemistry for the nuclear scientist. The geochemical material is designed for both the geoscientist and the nuclear scientist. There is no specific level for this book. Certainly, it should be useful to advanced undergraduates and graduates studying geology and nuclear science. It does not pretend to cover a tremendous amount of detail in all subjects, yet the references cited provide the necessary source materials for follow-up study. It is my intention that the reader of this book will have a better, broader understanding of the geochemical aspects of radioactive waste disposal than is otherwise available in anyone source.
In the U.S., approximately two-thirds of the coastal rivers and bays are moderately to severely degraded from nutrient pollution. The contributors to this book use long-term data sets to discuss the interactions among biological, ecological, chemical, and physical processes, and discuss what is known about nutrient inputs to the bay ecosystem, the impacts related to nutrient inputs, and how the ecosystem might respond to a sudden reduction in these inputs. |
You may like...
Classic Restaurants of Summit County
Sharon A. Myers, Images Courtesy of the Akron Beacon Journal--Summit Memory Project
Paperback
|