![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Environmental engineering & technology > Sanitary & municipal engineering > Water supply & treatment > General
Sustainable sanitation and water pollution control calls for adoption of affordable and efficient wastewater treatment technologies. In the developing countries, the safe management of wastewater is not widespread. There is therefore a need for an appropriate technology that can reliably achieve acceptable effluent quality for discharge to the environment at minimal cost. Constructed wetland (CW) systems have been used as a cost effective alternative to conventional methods of wastewater treatment. However, the mechanistic understanding of the CW has not matured, while performance data that can guide design and operation of CW under tropical climate are scarce. This study explores the treatment of domestic wastewater with subsurface constructed wetlands, in order to provide performance data that can influence design and operation of CW under tropical conditions and to evaluate the processes involved with the transformation and degradation of organic matter and nutrients. The thesis contributes to performance data and getting a better mechanistic understanding about the factors influencing the performance of horizontal subsurface flow constructed wetland (HSSF-CW) treating real domestic wastewater under tropical conditions. The findings obtained in this research may prove useful towards the wider application of the constructed wetland wastewater treatment technology and the optimization of full-scale HSSF-CW.
This book is an outcome from the International Expo 'Water and Sustainable Development' held in Zaragoza (Spain) in 2008. Support from the Spanish Ministry of Environment, Caja Rioja, Government of Aragon, and the World Bank is acknowledged. 'Few resources will play a more important role in shaping our economic future, or face more daunting challenges, than water. This internationally acclaimed team of experts has produced a first-rate volume that is full of intriguing, practical ideas for meeting those challenges in a rich variety of institutional settings.' Tom Tietenberg, Mitchell Family Professor of Economics, Emeritus, Colby College, USA 'This volume brings together two critical but interrelated dimensions of water challenge, i.e. water pollution, particularly from non-point sources, and water conservation. The editors are well known experts on the subject as are the contributors.' R. Maria Saleth, International Water Management Institute, Sri Lanka and Associate Editor, Water Policy 'The profound contribution of this volume is that it brings together various economic concepts and policy dilemmas regarding water shortages, non-point source pollution, efficiency of water use and irrigation technology. Recommended reading for anyone working in the area of water management.' Henk Folmer, University of Groningen and Wageningen University, The Netherlands As countries face deteriorating water and environmental quality as well as water shortages, pollution control and the efficiency of water use become of paramount importance. Agriculture is one of the main non-point polluters of water bodies and irrigation for agriculture is one of the main consumers of water. While it is very hard to regulate pollution from agriculture, attempts have been made via economic and command and control instruments, and also through investments in technologies and ecosystems recovery. Coping with non-point pollution takes the form of both policy intervention and technology development. Likewise it is recognized that irrigation efficiency varies across countries, influenced by both technology and supporting adoption policies. Countries that lead in irrigation technology and supporting policies have certain traits in common. They face very high scarcity and are pushed to find innovative solutions, both technical and policy related. The recent multibillion investments in irrigation technologies in Spain, and similar proposals in Australia, for example, highlight the potential of irrigation technologies to cope with scarcity and water quality degradation. This book reviews all of the above issues, presents experiences in selected countries, and assesses the degree of success of alternative policies for coping with non-point water pollution and improving irrigation efficiency.
Examining the water, development and security linkages in Central Asia can feel a bit like solving a Rubik's cube. The Rubik's cube starts to usually find structure and the different pieces find their places when its solver adopts a systematic approach. Still, solving the whole cube takes time and perseverance. This is also the case with water and security in Central Asia as demonstrated by the chapters in this book. In the case of water and security in Central Asia, there are many "faces", including not only the Central Asian states but also the neighbouring countries and other players of global geopolitics; "stickers" such as policies, practices, causes, and impacts; and "colours" such as the different stakeholders, ranging from the micro and meso levels to the macro level. Understanding all these, or getting clarity on the nexus, can seem extremely challenging. Even though none of the chapters alone answers the question of what constitutes water and security in Central Asia, each of them gives thoughtful ideas and information on the complexity of the issue. This book was published as a special issue of the International Journal of Water Resources Development.
The principle of transferable groundwater rights is that by making water rights capable of being traded in the market, water resources can be used more sustainably and efficiently. Groundwater would achieve its economic value, by switching from the high volume-low value irrigation, which is prevalent with many farmers, particularly in South Asia, to low volume-high value urban supply or the growing of intensive horticultural or cash crops. This book discusses transferable groundwater rights in their broader context. It starts with a detailed description of the physical aspects of groundwater, which non-technical readers should find useful, followed by a discussion of legal and economic aspects. Water transfers and the international experiences in transferable groundwater rights are dealt with in detail in two subsequent chapters. A model is presented to guide those involved in water resources management and planning in their decision process to introduce transferable groundwater rights and water rights trading. The author concludes that transferable groundwater rights potentially offer a better alternative to land-based water rights systems. However, he casts serious doubt on whether groundwater rights trading on its own can achieve water resources sustainability, environmental protection and social equity. Government intervention seems to be almost always needed to assist the water rights market and take responsibility for any of its adverse consequences.
Floods are one of the most common and widely distributed natural risks to life and property worldwide. There is a need to identify the risk of flooding in flood prone areas to support decisions for flood management from high level planning proposals to detailed design. An important part of modern flood risk management is to assess vulnerability to floods. This assessment can be done only by using a parametric approach. Worldwide there is a need to enhance our understanding of vulnerability and to also develop methodologies and tools to assess vulnerability. One of the most important goals of assessing flood vulnerability is to create a readily understandable link between the theoretical concepts of flood vulnerability and the day-to-day decision-making process and to encapsulate this link in an easily accessible tool. The present book portrays a holistic parametric approach to be used in flood vulnerability assessment and this way to facilitate the consideration of system impacts in water resources decision-making. The approach was verified in practical applications on different spatial scales and comparison with deterministic approaches. The use of flood vulnerability approach can produce helpful understanding into vulnerability and capacities for using it in planning and implementing projects.
A combination of future change pressures - including unprecedented growth in population, urbanization, socio-economic, and climate change - are imposing new stresses on the earth s resources and society s ability to maintain or improve infrastructure systems and environmental quality. While planning for sustainability, we need to make decisions considering those future change pressures, which are often uncertain and generate various risks in systems. These decisions determine the long-term sustainability of a system. The main outcomes of this research are a novel framework for risk and uncertainty analysis, a hybrid approach of uncertainty analysis, and fuzzy set theory based multi-criteria analysis method for decision-making. The developed framework can be applied in any other system without much modification. The algorithms for a hybrid approach to uncertainly analysis are based on both the probability and fuzzy set theory. It can capture both qualitative and quantitative sources of uncertainty in any complex system modelling. The fuzzy set theory based multi-criteria analysis method is supported with a framework that allows quantifying performance and sustainability in a system. Both uncertainty analysis and multi-criteria methods are supported with stand-alone tools that can be coupled with any systems modelling. The framework, methods, and tools are demonstrated in data surplus case in Birmingham, UK and data scarce case in Kathmandu, Nepal and Mbale Town, Uganda. This thesis demonstrates the effectiveness of the developed framework, methodology, and tools for strategic planning of urban water systems in both data scarce and data limited conditions.
Contamination of the different components of environment through industrial and anthropogenic activities have guided new eras of research. This has lead to development of strategies/methodologies to curtail/minimize environmental contamination. Research studies conducted all over the globe established that bioremediation play a promising role in minimizing environmental contamination. In the last decade, phytoremediation studies have been conducted on a vast scale. Initial research in this scenario focused on screening terrestrial plant species that remove contaminants from soil and air. Later, scientific community realized that water is a basic necessity for sustaining life on earth and quality of which is getting deteriorated day by day. This initiated studies on phytoremediation using aquatic plants. Role of aquatic plant species in cleaning water bodies was also explored. Many of the aquatic plant species showed potential to treat domestic, municipal and industrial wastewaters and hence their use in constructed wetlands for treating wastewaters was emphasized. The present book contains five chapters. First two chapters provide information about types of contaminants commonly reported in wastewaters and enlists some important and well studied aquatic plant species known for their potential to remove various contaminants from wastewater. Subsequent chapters deal with mechanisms involved in contaminant removal by aquatic plant species, and also provide detailed information about role of aquatic plant species in wetlands. Potential of constructed wetlands in cleaning domestic and industrial wastewaters has also been discussed in detail. The strategy for enhancing phytoremediation capacity of plants by different means and effectiveness of phytoremediation technology in terms of monitory benefits has been discussed in last chapter. Last chapter also emphasizes the future aspects of this technology.
The study presented in this book is a part of a collective effort to bridge the existing gap of our understanding of morphological behavior of tidal basins between engineering and geological time scales by extending the use of coastal engineering tools (process-based models) to geological time scales. The Dutch Waddenzee is chosen as the case study and the working hypothesis that 'If you put enough of the essential physics into the model, the most important features of the morphological behavior will come out, even at longer time scales' is examined. Through a number of steps, this study shows that the working hypothesis is valid and provides a clearer picture of the relation between 'most important features ' and ' the essential physics '. In this study it is shown that a process-based model can be used to simulate long-term morphological changes in tidal basins and produce reasonable results. The result of a very simplified model of the Dutch Waddenzee shows a good qualitative agreement with current pattern of channels and shoals of the Dutch Waddenzee. Also the morphological features of the basins in the simulations follow the data-based equilibrium equations and conceptual models.
Learn how others modernize workflows, create actionable data, reduce costs, and prepare for new challenges. Location is at the core of many utilities' daily and long-term planning, but it's about more than making a map. It's improving the reliability of your water and energy infrastructure by reducing service interruptions. It's using data analysis to make informed operational decisions, both in the office and in the field. It's strengthening your network safety and security while increasing customer satisfaction. With advancements in smart technologies, location intelligence for utilities management is not just for GIS specialists. In Delivering Water and Power: GIS for Utilities, see how public and private utilities around the world have implemented geographic information systems (GIS) to visualize and analyze data for situational awareness, operational efficiency, and asset management. In this collection of case studies and "how to" guidance, gain an overview of how GIS was used to: Protect customers in Denver through an innovative lead reduction program Streamline asset inspections in the UK Improve emergency response efforts in Puerto Rico Increase solar energy potential and adoption in Dubai Through web apps, online maps, dashboards, and other GIS solutions, utility professionals develop a deeper understanding of network maintenance and performance within a real-world context, increasing operational flexibility, creating a safer environment for workers, and raising customer satisfaction. Discover how GIS and location intelligence modernize utility infrastructure and operations for improved service delivery and management with Delivering Water and Power: Applying GIS for Utilities.
This study investigates the patterns that describe reliability of water distribution networks focusing to the node connectivity, energy balance, and economics of construction, operation and maintenance. A number of measures to evaluate the network resilience has been developed and assessed to arrive at more accurate diagnostics of regular and irregular demand scenarios. These measures have been proposed as a part of the methodology for snap-shot assessment of network reliability based on its configuration and hydraulic performance. Practical outcome of the research is the decision support tool for reliability-based design of water distribution networks. This computer package named NEDRA (NEtwork Design and Reliability Assessment) consists of the modules for network generation, filtering, initialisation, optimisation, diagnostics and cost calculation, which can be used for sensitivity analyses of single network layout or assessments of multiple layouts. The study concludes that none of the analysed aspects develops clear singular patterns. Nevertheless, the proposed network buffer index (NBI) and the hydraulic reliability diagram (HRD) as visual representation of the network resilience give sufficient snap-shot pointing the composition of the index value, and displaying possible weak points in the network that can be hidden behind the averaged values of various reliability measures.
Data-Driven Modeling: Using MATLAB(r) in Water Resources and
Environmental Engineering provides a systematic account of major
concepts and methodologies for data-driven models and presents a
unified framework that makes the subject more accessible to and
applicable for researchers and practitioners. It integrates
important theories and applications of data-driven models and uses
them to deal with a wide range of problems in the field of water
resources and environmental engineering such as hydrological
forecasting, flood analysis, water quality monitoring,
regionalizing climatic data, and general function
approximation.
This book presents carbon nanotubes as a potential material for the development of new waste water treatment technologies. Reviews on adsorption, catalysis, membrane, filtration and desinfection methods are provided. A special chapter presents the use of carbon nanotubes to sense and monitor water pollutants. The text underlies each technology and process as well as the current commercialization efforts. Research gaps are highlighted at the end with links to further reading material in the field.
WATER RESOURCES AND ENVIRONMENT provides a detailed introduction to the full range of advanced, multidisciplinary techniques used in the study of water resources from understanding individual aquifers to the protection and management of water in a sustainable way, compatible with the preservation of the environment. Based on a masters course from UNESCO's International Hydrological Program, this textbook is accompanied by color figures and graphics, illustrating clearly the content of the text and showing real examples from the field. Each chapter also contains a list of exercises and practical activities as well as case studies.
A comprehensive and detailed study on the scaling potential of calcium carbonate in seawater reverse osmosis systems (SWRO). The study provides a new approach for calculating the degree of supersaturation and the pH of the SWRO systems concentrates with the assistance of the feed-water pH and the inorganic carbon constituents. Furthermore, the book highlights the weakness in the present supersaturation indices and membrane manufacturers programs. Finally, the research suggested that SWRO concentrate is much lower undersaturated with respect to calcium carbonate than previously thought. This was confirmed by comprehensive pilot testing where acids and antiscalants used to prevent calcium carbonate scaling were completely eliminated from the pilot plant.
Water Resources in the Mediterranean Region summarizes and collates scientific developments around water resources in the Mediterranean socio-economic environment through a multidisciplinary framework synthesizing hydrology, hydrogeology, climate, bioclimatology, economics, and geography. As such, it provides essential information for any reader looking to learn more about the Mediterranean which is experiencing the impact of climate change and concurrent complex issues of anthropogenic effects, especially in agriculture and other resource uses. Water Resources in the Mediterranean Region covers different challenges in the issue of the evolution of water resources in the Mediterranean. It is intended for PhD students, research scientists, and managers interested in new solutions and approaches for water management and in the forecast of future water dynamics.
Environmental Modeling and Health Risk Analysis (ACTS/RISK) The purpose of this book is to provide the reader with an integrated perspective on several ?elds. First, it discusses the ?elds of environmental modeling in general and multimedia (the term "multimedia" is used throughout the text to indicate that environmental transformation and transport processes are discussed in association with three environmental media: air, groundwater and surface water pathways) environmental transformation and transport processes in particular; it also provides a detailed description of numerous mechanistic models that are used in these ?elds. Second, this book presents a review of the topics of exposure and health risk analysis. The Analytical Contaminant Transport Analysis System (ACTS) and Health RISK Analysis (RISK) software tools are an integral part of the book and provide computational platforms for all the models discussed herein. The most recent versions of these two software tools can be downloaded from the publisher's web site. The author recommends registering the software on the web download page so that users can receive updates about newer versions of the software.
Hailed on first publication as a straightforward, practical, and to-the-point account of wastewater principles, practices, and operations for general readers, students, and wastewater operators in training and for all levels of operators at any level of licensure, Spellman's Standard Handbook for Wastewater Operators, Volumes I, II, and III almost instantly became the standard resource for this field. The second edition continues the tradition, exploring important aspects of wastewater operations and operator preparation for licensure examinations. Each volume has been upgraded, updated, and expanded to include additional pertinent information to better prepare each qualified user for professional licensure. More than just a study guide or readily accessible source of information for preparing wastewater personnel for operator certification and licensure, this three-volume manual and troubleshooting guide compiles wastewater treatment information, data, operations material, process control procedures, safety and health information, new trends in wastewater treatment administration and technology, and numerous sample problem-solving practice sets. Drawing on Frank Spellman's expertise and experience, this book provides: Instant access to information that aids in the efficient operation of a wastewater treatment plant Basic information and sample problem sets needed to prepare for state licensing and certification examinations User-friendly, straightforward fundamental reference material organized into three focused volumes Contrary to popular belief, treating wastewater is not just a science, but both an art and a science. It requires technical expertise, experience, and an understanding of a broad range of available technologies. With coverage ranging from pumping and screening influent to treating the waste stream and managing biosolids, this three-volume set provides easy-to-understand information. Though formatted at three separate levels, overlap between each volume not only ensures continuity and a smooth read form volume to volume, but makes each one a handheld, stand-alone reference that presents essential information in a precise, efficient, and effective manner.
The management of water resources across boundaries, whether sub-national or international, is one of the most difficult challenges facing water managers today. The upstream exploitation or diversion of groundwater or rivers can have devastating consequences for those living downstream, and transboundary rivers can provide a source of conflict between nations or states, particularly where water resources are scarce. Similarly, water based-pollution can spread across borders and create disputes and a need for sound governance. This book is the first to bring together in a concise and accessible way all of the main topics to be considered when managing transboundary waters. It will raise the awareness of practitioners of the various issues needed to be taken into account when making water management decisions and provide a practically-based overview for advanced students. The authors show clearly how vital it is to cooperate effectively over the management of shared waters to unlock their contribution to regional sustainable development. The book is largely based on a long-running and tested international training programme, run by the Stockholm International Water Institute and Ramboll Natura, and supported by the Swedish International Development Co-operation Agency (Sida), where the respective authors have presented modules on the programmes. It addresses issues not only of conflict, but also of managing power asymmetries, benefit-sharing, stakeholder participation, international water law, environmental water requirements and regional development. It will be particularly useful for those with a background in hydrology or engineering who wish to broaden their management skills.
A detailed view on the effects of seismic activity on tank structures As the use of aboveground and underground storage tanks (ASTs and USTs) continues to grow--with approximately 545 thousand in the US alone--the greatest threat to from AST and USTs is the contamination of groundwater, a vital source of drinking water throughout the world and one that close to half of Americans rely upon. These tanks suffer a great deal of strain during an earthquake, as a complicated pattern of stress affects them such that poorly designed tanks have leaked, buckled, or even collapsed during seismic events. Furthermore in oil and gas industrial plants, the risk of damage is even more critical due to the effect of explosion, collapse, and air or soil contamination by chemical fluid spillages. Seismic Design and Analysis of Tanks provides the first in-depth discussion of the principles and applications of shell structure design and earthquake engineering analyses focused on tank structures, and how these methodologies can help prevent the destruction of AST and USTs during earthquakes. Providing a thorough examination into the design, analysis, and performance of steel, reinforced concrete, and precast tanks, this book takes a look at tanks that are aboveground, underground, or elevated, anchored and unanchored, rigid or flexible, and evaluates the efficacy of each method during times of turbulence--and it does so without getting bogged down with impenetrable math and theory. Seismic Design and Analysis of Tanks readers will also find: Global approach for the best analytical and practical solutions available in each region: Discussion of the latest US codes and standards from the American Society of Civil Engineers (ACSE 7), American Concrete Institute (ACI 350,3, 371.R), American Water Works Association (AWWA D100, D110, D115), and the American Petroleum Institute (API 650) An overview of European codes and standards including Eurocode 8-4 and CEN-EN 14015 Hundreds of step-by-step equations accompanied by illustrations Photographs that feature real-world damage to tanks caused by seismic events Perfect for practicing structural engineers, geotechnical engineers, civil engineers, and engineers of all kinds who are responsible for the design, analysis, and performance of tanks and foundations--as well as students studying engineering--Seismic Design and Analysis of Tanks is a landmark text, the first work of its kind to deal with seismic engineering performance of storage tanks.
According to the United Nations, 77 million people are expected to face water shortage by 2025, if people continue to use water at the current rate. More water than available would be needed to grow the world's food during the next decade. As a result of scarcity of water, global annual food production losses could reach 350 million tons by 2025. Divided into six main sections, this volume outlines strategies to conserve soil and water resources to help ensure both water and food security: - Challenges to ensure water and agricultural sustainability - Sustainable strategies for managing water and soil resources and groundwater recharge technologies - Soil-quality issues - Water-quality issues, with special reference to groundwater pollution with arsenic - Management in different agroclimatic environments, with particular reference to rainfed agriculture - Biotechnological applications for drought-tolerant crop varieties with improved water use efficiency, water conservation strategies, and sustainable agronomic alternatives. This guide on agricultural sustainability is intended for scientists and advanced students in agronomy, soil science, agricultural engineering, agricultural economics, plant breeding, plant genetics, plant biotechnology, water resources, hydrology, geography, and other agriculture-related fields.
A collection of articles by leading international experts on modeling and control of potable water distribution and sewerage collection systems, focusing on advances in sensors, instrumentation and communications technologies; assessment of sensor reliability, accuracy and fitness; data management including SCADA and GIS; systems modelling, optimisation and decision support; real time monitoring, modelling control and associated uncertainties; water quality, water and wastewater treatment modeling; demand forecasting, leakage and energy management; asset management and performance modeling; sustainable urban water management including flooding issues; security, reliability and resilience of water systems; likely impacts of climate change; Water scarcity and intermittent supply. Intended for water researchers in industry and academia.
Day-to-day water management is challenged by meteorological extremes, causing floods and droughts. Often operational water managers are informed too late about these upcoming events to be able to respond and mitigate their effects, such as by taking flood control measures or even requiring evacuation of local inhabitants. Therefore, the use of weather forecast information with hydrological models can be invaluable for the operational water manager to expand the forecast horizon and to have time to take appropriate action. This is called Anticipatory Water Management. Anticipatory actions may have adverse effects, such as when flood control actions turn out to have been unnecessary, because the actual rainfall was less than predicted. Therefore the uncertainty of the forecasts and the associated risks of applying Anticipatory Water Management have to be assessed. To facilitate this assessment, meteorological institutes are providing ensemble predictions to estimate the dynamic uncertainty of weather forecasts. This dissertation presents ways of improving the end-use of ensemble predictions in Anticipatory Water Management.
Arsenic, manganese and iron in drinking water at concentrations exceeding recommended guideline values pose health risks and aesthetic defects. Batch and pilot experiments on manganese adsorption equilibrium and kinetics using iron-oxide coated sand (IOCS), Aquamandix and other media have been investigated and modeled. Effect of manganese and iron loading on manganese removal and rate of oxidation of adsorbed iron and manganese have been studied. Aquamandix and IOCS demonstrated iron and manganese adsorption capacity that increases with increasing pH under oxic and anoxic conditions. Manganese loading and low filtration rate using feedwater with no nitrite favour non-uniform development of catalytic manganese oxide on media that subsequently enhances manganese removal.
This book advocates a more thoughtful approach to urban water management. The approach involves reducing water consumption, harvesting rainwater, recycling rainwater and adopting Sustainable Drainage Systems (SuDS) where surface water is not sent straight to drains but is intercepted by features like green roofs, rain gardens, swales and ponds.Cities in particular need to change the existing linear model of water consumption and use to a more circular one in order to survive. The Water Sensitive City brings together the various specialised technical discussions that have been continuing for some time into a volume that is more accessible to designers (engineers and architects), urban planners and managers, and policymakers. |
You may like...
Novel Solutions to Water Pollution
Satinda Ahuja, Kiril Hristovski
Hardcover
R5,475
Discovery Miles 54 750
Practical Authority - Agency and…
Rebecca Neaera Abers, Margaret E. Keck
Hardcover
R3,843
Discovery Miles 38 430
Water Security for Palestinians and…
Christopher Ward, Isabelle Learmont, …
Hardcover
R3,183
Discovery Miles 31 830
Modular Treatment Approach for Drinking…
Satinder Kaur Brar, Pratik Kumar, …
Paperback
R3,160
Discovery Miles 31 600
Water Resources Management for Rural…
Sughosh Madhav, Arun Lal Srivastav, …
Paperback
R2,941
Discovery Miles 29 410
Solid/Liquid Separation: Equipment…
Steve Tarleton, Richard Wakeman
Hardcover
R5,920
Discovery Miles 59 200
Recent Advances in Disinfection…
Tanju Karanfil, Bill Mitch, …
Hardcover
R5,943
Discovery Miles 59 430
Concept of Zero Liquid Discharge…
Chaudhery Mustansar Hussain, Vidya Shetty Kodialbail
Paperback
R2,947
Discovery Miles 29 470
|