![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Life sciences: general issues > Genetics (non-medical)
Fruit Crops: Diagnosis and Management of Nutrient Constraints is the first and only resource to holistically relate fruits as a nutritional source for human health to the state-of-the-art methodologies currently used to diagnose and manage nutritional constraints placed on those fruits. This book explores a variety of advanced management techniques, including open field hydroponic, fertigation/bio-fertigation, the use of nano-fertilizers, sensors-based nutrient management, climate- smart integrated soil fertility management, inoculation with microbial consortium, and endophytes backed up by ecophysiology of fruit crops. These intricate issues are effectively presented, including real-world applications and future insights.
This detailed volume presents a comprehensive bioinformatic and experimental toolbox for prioritizing, annotating, and functionally analyzing long non-coding RNAs (lncRNAs). Playing a vital role in diverse biological progresses and human disease, lncRNAs have proven to be a challenging subject of study due to our limited understanding of their sequence-function relationships, lack of complete genetic annotation, and the unavailability of systems required to define their functional importance and molecular mechanisms, all of which this book seeks to address. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Functional Analysis of Long Non-Coding RNAs: Methods and Protocols provides a timely and convenient resource to facilitate the identification and characterization of disease-associated human lncRNAs, which aims to shed light on their role in biology and pathophysiology and ultimately lead toward novel therapeutic approaches targeting lncRNAs for the amelioration of human diseases.
Clinical Precision Medicine: A Primer offers clinicians, researchers and students a practical, up-to-date resource on precision medicine, its evolving technologies, and pathways towards clinical implementation. Early chapters address the fundamentals of molecular biology and gene regulation as they relate to precision medicine, as well as the foundations of heredity and epigenetics. Oncology, an early adopter of precision approaches, is considered with its relationship to genetic variation in drug metabolism, along with tumor immunology and the impact of DNA variation in clinical care. Contributions by Stephanie Kramer, a Clinical Genetic Counselor, also provide current information on prenatal diagnostics and adult genetics that highlight the critical role of genetic counselors in the era of precision medicine.
This volume details a collection of state-of-art methods including identification of novel ncRNAs and their targets, functional annotation and disease association in different biological contexts. Chapters guide readers through an overview of disease-specific ncRNAs, computational methods and workflows for ncRNA discovery, annotation based on high-throughput sequencing data, bioinformatics tools and databases for ncRNA analyses, network-based methods, and kinetic modelling of ncRNA-mediated gene regulation. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Computational Biology of Non-Coding RNA: Methods and Protocols aims to provide a state-of-the-art collection of computational methods and approaches that will be of value to researchers interested in ncRNA field.
Genetic Engineering and Genome Editing for Zinc Biofortification of Rice provides the first single-volume, comprehensive resource on genetic engineering approaches, including novel genome editing techniques, that are carried out in rice, a staple crop for much of the world's population. Dietary zinc deficiency can lead to negative health outcomes, including increased risk of stunting, respiratory diseases, diarrhea, mortality during childhood, and preterm births in pregnancy. By providing a complete view of the need for zinc biofortification in rice, sections in this book discuss state-of-the-art scientific advances, and then go further, placing them in their proper scientific, regulatory and socioeconomic contexts. While zinc biofortification can be achieved through conventional breeding, genetic engineering and agronomic practices, this is the first reference to bring all the latest insights and understanding to a comprehensive resource that is based on real-world experience and targeted applications.
Hormonal Cross-Talk, Plant Defense and Development: Plant Biology, Sustainability and Climate Change focuses specifically on plants and their interaction to auxins, gibberellins, cytokinins, ethylene, abscisic acid, jasmonates, brassinosteroids, strigolactones, and the potential those interactions offer for improved plant health and production. Plant hormones (auxins, gibberellins, cytokinins, ethylene, abscisic acid, jasmonates, brassinosteroids, salicylic acid, strigolactones etc.) regulate numerous aspects of plant growth and developmental processes. Each hormone initiates a specific molecular pathway, with each pathway integrated in a complex network of synergistic, antagonistic and additive interactions. This is a valuable reference for those seeking to understand and improve plant health using natural processes. The cross-talks of auxins - abscisic acid, auxins - brassinosteroids, brassinosteroids- abscisic acid, ethylene - abscisic acid, brassinosteroids - ethylene, cytokinins - abscisic acid, brassinosteroids - jasmonates, brassinosteroids - salicylic acid, and gibberellins - jasmonates - strigolactones have been shown to regulate a number of biological processes in plant system. The cross-talk provides robustness to the plant immune system but also drives specificity of induced defense responses against the plethora of biotic and abiotic interactions.
Epigenetic Mechanisms of the Cambrian Explosion provides readers with a basic biological knowledge and epigenetic explanation of the biological puzzle of the Cambrian explosion, the unprecedented rapid diversification of animals that began 542 million years ago. During an evolutionarily instant of ~10 million years, which represents only 0.3% of the time of existence of life on Earth, or less than 2% of the time of existence of metazoans, all of the 30 extant body plans, major animal groups (phyla) and several extinct groups appeared. The work helps address this phenomena and tries to answer remaining questions for evolutionary biology, epigenetics, and scientific researchers. The book recognizes and presents objective representations of alternative theories for epigenetic evolution in this period, with the author drawing on his epigenetic theory of evolution to explain the causal basis of the Cambrian explosion. Both empirical evidence and theoretical arguments are presented in support of this thought-provoking epigenetic theory.
This book discusses applications of pluripotent stem cells to study eye disease in vitro and to create novel therapies for degenerative eye diseases. Chapters are contributed by experts in the field and cover such topics as the use of pluripotent stem cells in 2D and 3D engineering of ocular tissues for disease modelling and drug testing as well as approaches to replace degenerated RPE and photoreceptors in macular degeneration and retinitis pigmentosa. Pluripotent Stem Cells in Eye Disease Therapy presents a comprehensive discussion of basic science and clinical applications and is an indispensable resource for everyone from advanced graduate students to advanced professionals who want to learn about the potential of stem cell biology and its role in the field of retinal diseases.
Much research has focused on the basic cellular and molecular biological aspects of stem cells. Much of this research has been fueled by their potential for use in regenerative medicine applications, which has in turn spurred growing numbers of translational and clinical studies. However, more work is needed if the potential is to be realized for improvement of the lives and well-being of patients with numerous diseases and conditions. This book series 'Cell Biology and Translational Medicine (CBTMED)' as part of SpringerNature's longstanding and very successful Advances in Experimental Medicine and Biology book series, has the goal to accelerate advances by timely information exchange. Emerging areas of regenerative medicine and translational aspects of stem cells are covered in each volume. Outstanding researchers are recruited to highlight developments and remaining challenges in both the basic research and clinical arenas. This current book is the third volume of a continuing series.
This book is a compilation of the bench experience of leading experts from various research labs involved in the cutting edge area of research. The authors describe the use of stem cells both as part of the combinatorial therapeutic intervention approach and as tools (disease model) during drug development, highlighting the shift from a conventional symptomatic treatment strategy to addressing the root cause of the disease process. The book is a continuum of the previously published book entitled "Stem Cells: from Drug to Drug Discovery" which was published in 2017.
This detailed collection explores genome-wide association studies (GWAS), which have revolutionized the investigation of complex traits over the past decade and have unveiled numerous useful genotype-phenotype associations in plants. The book describes the key concepts and methods underlying GWAS, including the genetic architecture underlying variation for phenotypic traits, the structure of genetic variation in plants, technologies for capturing genetic information, study designs, and the statistical models and bioinformatics tools used for data analysis. Written for the highly successful Methods in Molecular Biology series, chapters include the kind of invaluable implementation advice that leads to the most fruitful research results. Authoritative and practical, Genome-Wide Association Studies serves as an extremely valuable resource for the plant research community by rendering GWAS analysis less challenging and more accessible to a broader group of users.
Nucleic Acids as Gene Anticancer Drug Delivery Therapy highlights the most recent developments in cancer treatment using nucleic acids, nanoparticles and polymer nanoparticles for genomic nanocarriers as drug delivery, including promising opportunities for targeted and combination therapy. The development of a wide spectrum of nanoscale technologies is beginning to change the scientific landscape in terms of disease diagnosis, treatment, and prevention. This book presents the use of nanotechnology for medical applications, focusing on its use for anticancer drug delivery. Various intelligent drug delivery systems such as inorganic nanoparticles and polymer-based drug delivery are discussed. The use of smart drug delivery systems seems to be a promising approach for developing intelligent therapeutic systems for cancer immunotherapies and is discussed in detail along with nucleic acid-targeted drug delivery combination therapy for cancer. Nucleic Acids as Gene Anticancer Drug Delivery Therapy will be a useful reference for pharmaceutical scientists, pharmacologiests, and those involved in nanotechnology and cancer research.
This volume provides essential and fundamental protocols on manipulation chromosome. Chapters details methods on the preparation of mitotic chromosome, chromosome aberration, micronucleus (MN), comet assay, karyotyping, Fluorescent in situ hybridization (FISH), premature chromosome condensation (PCC), immunohistochemistry (IHC) staining, new generation sequencing technology and new chromosome concepts, such as epigenetic and its cause of cancer are presented. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary materials and reagents, includes tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols. Authoritative and cutting-edge, Chromosome Analysis: Methods and Protocols aims to be a useful and practical guide to new researchers and experts looking to expand their knowledge.
Cognitive Archeology, Body Cognition, and the Evolution of Visuospatial Perception offers comprehensive perspective on the role of brain form and function, body cognition, and visuospatial integration in the evolution of ancient and modern human species. The book covers evolutionary neuroanatomy, cognitive sciences, and experimental archaeology, providing a bridge between anthropology and evolutionary studies to neurosciences. Written by international experts in paleoanthropology and prehistoric archaeology, as well as neurobiology and psychology, the book explores how body perception and spatial capacity may have evolved to enhance a "prosthetic capacity" able to integrate the brain, body and technological discoveries into a single functional system. Chapters discuss the anatomy, function and evolution of the parietal cortex in human and non-human primates. In addition, the book covers the evolution of visuospatial cognition and how modern brain imaging can trace these changes back millions of years.
The study of molecular events leading to cellular transformation and cancer has progressed considerably during the 1990s. It has become apparent that many genes subject to modification in cancer are, in fact, transcription factors that govern the execution of the genetic programme of the cell. Transcription factors can behave either as oncogenes or as tumor supressor genes. To date only a very limited number of transcription factors have been associated with cancer. This volume gives molecular information on several oncogenes, tumor suppressor genes or chromosomal translocations. Each chapter contains a description of the structure of such transcription factors, the nature of target genes, the regulation of their activities and an explaination of how they can deregulate cell growth and differentiation. This book should be suitable for the specialist scientist and the advanced student
This book presents deliberations on molecular and genomic mechanisms underlying the interactions of crop plants to the abiotic stresses caused by heat, cold, drought, flooding, submergence, salinity, acidity, etc., important to develop resistant crop varieties. Knowledge on the advanced genetic and genomic crop improvement strategies including molecular breeding, transgenics, genomic-assisted breeding, and the recently emerging genome editing for developing resistant varieties in pulse crops is imperative for addressing FHNEE (food, health, nutrition, energy, and environment) security. Whole genome sequencing of these crops followed by genotyping-by-sequencing has provided precise information regarding the genes conferring resistance useful for gene discovery, allele mining, and shuttle breeding which in turn opened up the scope for 'designing' crop genomes with resistance to abiotic stresses. The nine chapters each dedicated to a pulse crop in this volume elucidate on different types of abiotic stresses and their effects on and interaction with the crop; enumerate on the available genetic diversity with regard to abiotic stress resistance among available cultivars; illuminate on the potential gene pools for utilization in interspecific gene transfer; present brief on classical genetics of stress resistance and traditional breeding for transferring them to their cultivated counterparts; depict the success stories of genetic engineering for developing abiotic stress-resistant crop varieties; discuss on molecular mapping of genes and QTLs underlying stress resistance and their marker-assisted introgression into elite varieties; enunciate on different genomics-aided techniques including genomic selection, allele mining, gene discovery, and gene pyramiding for developing adaptive crop varieties with higher quantity and quality of yields, and also elaborate some case studies on genome editing focusing on specific genes for generating abiotic stress-resistant crops.
Gene duplication has long been believed to have played a major role in the rise of biological novelty through evolution of new function and gene expression patterns. The first book to examine gene duplication across all levels of biological organization, "Evolution after Gene Duplication" presents a comprehensive picture of the mechanistic process by which gene duplication may have played a role in generating biodiversity. Key Features: Explores comparative genomics, genome evolution studies and analysis of multi-gene families such as "Hox," globins, olfactory receptors and MHC (immune system)A complete post-genome treatment of the topic originally covered by Ohno's 1970 classic, this volume extends coverage to include the fate of associated regulatory pathwaysTaps the significant increase in multi-gene family data that has resulted from comparative genomicsComprehensive coverage that includes opposing theoretical viewpoints, comparative genomics data, theoretical and empirical evidence and the role of bioinformatics in the study of gene duplication This up-to-date overview of theory and mathematical models along with practical examples is suitable for scientists across various levels of biology as well as instructors and graduate students.
This volume provides cutting-edge techniques to further the study chromatin biology. Chapters include both novel and well-established methods for the analysis of DNA-associated proteins, DNA methylation, three-dimensional chromatin interactions, deep sequencing-based tools, and data analysis pipelines. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, provides details of the necessary materials and reagents, includes tips on troubleshooting and known pitfalls, and describes step-by-step, readily reproducible protocols. Authoritative and cutting-edge, Chromatin: Methods and Protocols aims to further the understanding of how modified DNA and associated proteins affect the transcriptional output of the genome. Chapter Genome-wide mapping and microscopy visualization of protein-DNA interactions by pA-DamID [Chapter 12] is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
The contents of this book focus on the recent investigations in molecular bi- ogywhereapplicationsoftopologyseemtobeverystimulating. Thevolumeis based on the talks and lectures given by participants of the three-month p- gram"TopologyinCondensedMatter,"whichwasheldintheMaxPlanck- stitut fur Physik komplexer Systeme, Dresden, Germany, 8May-31July 2002, under the scienti?c direction of Professors M. Kl eman, S. Novikov and - self. The aim of this program was to discuss recent applications of topology to several areas in condensed matter physics and molecular biology. The ?rst volume "Topology in Condensed Matter" is concerned with m- ern applications of geometrical and topological techniques to such new and classic ?elds of physics like electron theory of metals, theory of nano-crystals, aperiodic and liquid crystals, quantum computation and so on. This volume is published simultaneously in "Springer Series in Solid-State Physics." The present volume gives an exposition of the role of topology in the theory of proteins and DNA. The last thirty years a?rmed very e?cient - plications of modern mathematics, especially topology, in physics. The union of mathematics and physics was very stimulating for both sides. On the other hand, the impact of mathematics in biology has been rather limited. H- ever here also some interesting results were obtained. In particular, there are applications of knot theory in the theory of circular closed DNA. The - cent discoveries in molecular biology indicate future successful applications of topology."
This second edition volume is a companion volume to the previous edition and looks at new findings on novel bioactive chemicals and cognate targets, as well as the use of synthetic small molecules and a variety of tools to understand these processes. Chapters in this book cover topics such as screening plants for novel bioactive chemicals including lipid signaling and photo receptors; small molecule screens to include peptide ligands to generate new variations; using new chemicals to affect and dissect hormone signaling; and the application of easier microscale methods to simplify target identification and validation. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and practical, Plant Chemical Genomics: Methods and Protocols, Second Edition is a valuable resource that provides a foundation of techniques for novice and expert researchers in the plant chemical biology community.
Human Reproductive and Prenatal Genetics, Second Edition provides application-driven coverage of key topics in human reproductive and prenatal genetics, including genetic control underlying the development of the reproductive tracts and gametogenesis, the genetics of fertilization and implantation, the genetic basis of female and male infertility, as well as genetic and epigenetic aspects of assisted reproduction. Also examined are the genetics and epigenetics of the placenta in normal and abnormal pregnancy, preimplantation genetic diagnosis and screening, and cutting-edge advances in noninvasive prenatal screening, prenatal genetic counseling, and bioethical and medicolegal aspects of relevance in the lab and clinic. This new edition has been fully revised to address new and evolving technologies in human reproductive genetics, with new chapters added on chromatin landscapes and sex determination, genetic alterations of placental development and preeclampsia, metabolism and inflammation in PCOS, pre-implantational genetic testing, maternal genetic disorders, bioethics, and future applications.
Clinical Genome Sequencing: Psychological Aspects thoroughly details key psychological factors to consider while implementing genome sequencing in clinical practice, taking into account the subtleties of genetic risk assessment, patient consent and best practices for sharing genomic findings. Chapter contributions from leading international researchers and practitioners cover topics ranging from the current state of genomic testing, to patient consent, patient responses to sequencing data, common uncertainties, direct-to-consumer genomics, the role of genome sequencing in precision medicine, genetic counseling and genome sequencing, genome sequencing in pediatrics, genome sequencing in prenatal testing, and ethical issues in genome sequencing. Applied clinical case studies support concept illustration, making this an invaluable, practical reference for this important and multifaceted topic area within genomic medicine.
Sex ratio, the proportion of a progeny that is female, is an extremely important fitness trait. It is particularly interesting in relation to haplodiploidy, a variety of parthenogenesis in which organisms reproduce without the benefit of fertilization. This study arrives at conclusions drawn from new empirical studies: that biased sex ratios are characteristic of haplodiploid species; that these species are characteristically colonizing species with genetics suited both to spatially and temporally unpredictable environments; that manipulation of haplodiploid biological control agents, or pests that are to be controlled, depends on understanding the determinants of sex ratio; and that because evolutionary theory predicts that haplodiploids have the capacity to evolve faster than diploid organisms, haplodiploid species are the organisms of choice in biological control strategies.
Nucleic Acid Sensing and Immunity - PART B, Volume 345 gives a comprehensive overview of the nucleic acid machinery, from plants to mammalians, along with their regulation. Chapters in this updated volume include Nucleic acids sensing in allergic disorders, Nucleic acids sensing in autoimmune disorders, Nucleic acid sensing in inflammatory disorders, Viral nucleic acid sensing inflammasomes in intestinal host defense, Genome damage sensing leads to tissue homeostasis in Drosophila, Nucleic acids sensing in plants, Nucleic Acid sensing in invertebrates, amongst other topics.
Advances in Genetics, Volume 103, provides the latest information on the rapidly evolving field of genetics, presenting new medical breakthroughs that are occurring as a result of advances in our knowledge of the topic. The book continually publishes important reviews of the broadest interest to geneticists and their colleagues in affiliated disciplines, critically analyzing future directions. |
![]() ![]() You may like...
Disciple - Walking With God
Rorisang Thandekiso, Nkhensani Manabe
Paperback
![]()
Conversations With A Gentle Soul
Ahmed Kathrada, Sahm Venter
Paperback
![]()
Hiking Beyond Cape Town - 40 Inspiring…
Nina du Plessis, Willie Olivier
Paperback
|