![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Life sciences: general issues > Genetics (non-medical)
The over-riding premise for biotechnology in this book is bringing novel products to market to substantially advance patient care and disease mitigation. Biotechnology, over its relatively brief existence of 40 years, has experienced a mercurial growth. The vast educational need for biotechnology information in this rapidly burgeoning field is a basic rationale here. However a more prominent underpinning is that, bringing biotech products to market for patient care involves success in the following four areas of engagement simultaneously - scientific advances for healthcare technologies, novel and varied products for untreated diseases, regulatory authorities, and biotech companies. Features Comprehensive coverage of biotechnology science topics used in development and manufacturing Addresses all the scientific technologies within biotechnology responsible for products on the market and the pipeline Presents business issues such as marketing and sales of the products, as well as companies engaged, and how biotech business has evolved
The field of eukaryotic DNA repair is enjoying a period of remarkable growth and discovery, fueled by technological advances in molecular bi- ogy, protein biochemistry, and genetics. Notable achievements include the molecular cloning of multiple genes associated with classical human repair disorders, such as xeroderma pigmentosum, Cockayne syndrome, and ataxia telangiectasia; elucidation of the core reaction of nucleotide excision repair (NER); the discovery that certain NER proteins participate not only in repair, but also in transcription; recognition of the crucial role played by mismatch repair processes in maintenance of genome stability and avoidance of cancer; the findings that the tumor suppressor protein p53 is mutated in many types of cancer, and has a key role in directing potentially malignant, genotoxin-d- aged cells towards an apoptotic fate; and the discovery and elaboration of DNA damage (and replication) checkpoints, which placed repair phenomen- ogy firmly within a cell-cycle context. Of course, much remains to be learned about DNA repair. To that end, DNA Repair Protocols: Eukaryotic Systems is about the tools and techniques that have helped propel the DNA repair field into the mainstream of biological research. DNA Repair Protocols: Eukaryotic Systems provides detailed, step-- step instructions for studying manifold aspects of the eukaryotic response to genomic injury. The majority of chapters describe methods for analyzing DNA repair processes in mammalian cells. However, many of those techniques can be applied with only minor modification to other systems, and vice versa.
Lung cancer is the leading cause of cancer mortality in Western countries. It also provides an archetypal example of how inherited predisposing genetic variants may interact with an environmental influence (smoking) to modulate individual cancer risk. The Molecular Genetics of Lung Cancer describes how the new techniques, methods and approaches of molecular genetics are being used to unravel the complexities of the mechanisms underlying lung tumorigenesis by analysis at the DNA, RNA and protein levels with potentially important implications for tumour classification, diagnosis, prognosis and treatment as well as providing new insights into how lung tumours arise and how they progress to malignancy.
This volume discusses recent research advances in cancer biology, focusing on the role of the tumor microenvironment. Taken alongside its companion volumes, Tumor Microenvironment: Recent Advances covers the latest research on various aspects of the tumor microenvironment, as well as future directions. Useful for introducing the newer generation of researchers to the history of how scientists studied the tumor microenvironment as well as how this knowledge is currently applied for cancer treatments, it will be essential reading for advanced cell biology and cancer biology students, as well as researchers seeking an update on research on the tumor microenvironment.
Receptor Tyrosine Kinases, Volume 147 in the Advances in Cancer Research series, provides invaluable information on the exciting and fast-moving field of cancer research in the area of Receptor Tyrosine Kinases (RTKs) in the context of major basic science and translational advances, their importance in the development of a large number of anti-cancer drugs over the decades, and a peek into postulated advances in the coming decades for a number of RTK. Chapters in this new release are contributed by a group of International leading scientists who have a rich history in this field.
Completely updated and rewritten, with 150 new figures Genomes from a wide variety of organisms included, from viruses to humans Techniques fully integrated into the text, including those investigating the genome, transcriptome, and proteome Coverage of expression, regulation, and evolution is on a genomic scale Short answer questions and in-depth problems at the end of each chapter Same structure as Genomes 3 but streamlined
Transcription factors are important in regulating gene expression, and their analysis is of paramount interest to molecular biologists studying this area. This book looks at the basic machinery of the cell involved in transcription in eukaryotes and factors that control transcription in eukaryotic cells. It examines the regulatory systems that modulate gene expression in all cells,a s well as the more specialized systems that regulate localized gene expression throughout the mammalian organism. Transcription Factors updates classical knowledge with recent advances to provide a full and comprehensive coverage of the field for postgraduates and researchers in molecular biology involved in the study of gene regulation.
This book explains current strategies for mapping genomes of higher organisms and explores applications of gene mapping to agriculturally important species of plants and animals. It also explores the experimental techniques used for genetic and physical mapping of genes.
Legumes include many very important crop plants that contribute very critical protein to the diets of both humans and animals around the world. Their unique ability to fix atmospheric nitrogen in association with Rhizobia enriches soil fertility, and establishes the importance of their niche in agriculture. Divided into two volumes, this work presents an up-to-date analysis of in vitro and recombinant DNA technologies for the improvement of grain, forage and tree legumes. Volume 10A examines the current status and future prospects of challenges of the following: in vitro morphogenesis; biotic and abiotic stress tolerance; genomics; nitrogen fixation and utilization; nutritional improvement, and biodiversity of wild and tribal legumes. Volume 10B presents the current state and future prospects of in vitro regeneration and genetic transformation expression and stability of transgenes modification of traits in almost all the important legumes, for example: soybean; peanut; pea; french bean; chick pea; pigeon pea; cowpea; mung bean; black gram; azuki bean; lentil; Lathyrus; lupinus; Lotus spp; Medicago spp; Trifolium spp; Winged bean; Guar; and tree legumes for their improvement. Written by international experts, these volumes will be of great value to researchers, as well as graduate students and all those requiring an advanced level overview of the subject area.
Applied plant genomics and biotechnology reviews the recent advancements in the post-genomic era, discussing how different varieties respond to abiotic and biotic stresses, investigating epigenetic modifications and epigenetic memory through analysis of DNA methylation states, applicative uses of RNA silencing and RNA interference in plant physiology and in experimental transgenics, and plants modified to produce high-value pharmaceutical proteins. The book provides an overview of research advances in application of RNA silencing and RNA interference, through Virus-based transient gene expression systems, Virus induced gene complementation (VIGC), Virus induced gene silencing (Sir VIGS, Mr VIGS) Virus-based microRNA silencing (VbMS) and Virus-based RNA mobility assays (VRMA); RNA based vaccines and expression of virus proteins or RNA, and virus-like particles in plants, the potential of virus vaccines and therapeutics, and exploring plants as factories for useful products and pharmaceuticals are topics wholly deepened. The book reviews and discuss Plant Functional Genomic studies discussing the technologies supporting the genetic improvement of plants and the production of plant varieties more resistant to biotic and abiotic stresses. Several important crops are analysed providing a glimpse on the most up-to-date methods and topics of investigation. The book presents a review on current state of GMO, the cisgenesis-derived plants and novel plant products devoid of transgene elements, discuss their regulation and the production of desired traits such as resistance to viruses and disease also in fruit trees and wood trees with long vegetative periods. Several chapters cover aspects of plant physiology related to plant improvement: cytokinin metabolism and hormone signaling pathways are discussed in barley; PARP-domain proteins involved in Stress-Induced Morphogenetic Response, regulation of NAD signaling and ROS dependent synthesis of anthocyanins. Apple allergen isoforms and the various content in different varieties are discussed and approaches to reduce their presence. Euphorbiaceae, castor bean, cassava and Jathropa are discussed at genomic structure, their diseases and viruses, and methods of transformation. Rice genomics and agricultural traits are discussed, and biotechnology for engineering and improve rice varieties. Mango topics are presented with an overview of molecular methods for variety differentiation, and aspects of fruit improvement by traditional and biotechnology methods. Oilseed rape is presented, discussing the genetic diversity, quality traits, genetic maps, genomic selection and comparative genomics for improvement of varieties. Tomato studies are presented, with an overview on the knowledge of the regulatory networks involved in flowering, methods applied to study the tomato genome-wide DNA methylation, its regulation by small RNAs, microRNA-dependent control of transcription factors expression, the development and ripening processes in tomato, genomic studies and fruit modelling to establish fleshy fruit traits of interest; the gene reprogramming during fruit ripening, and the ethylene dependent and independent DNA methylation changes.
Provides examples, to laboratories and lab personnel, on how to report the results of forensic biology examinations given activity level propositions, along with example reports and standard operating procedures Presents worked case examples, based on real crimes, showing how the theory of activity level evaluation can be applied in practice Illustrates how the theory of activity level evaluation, explained specifically for forensic genetic cases, can likewise be applied to other forensic disciplines Explains concepts in simple terms, making it ideal for law or science students wishing to understand the fundamental of forensic evidence evaluation
This important reference/text provides technologists with the basic informationnecessary to interact scientifically with molecular biologists and get involved in scalinguplaboratory procedures and designing and constructing commercial plants.Requiring no previous training or experience in biology, Genetic EngineeringFundamentals explains the biological and chemical principles of recombinant DNAtechnology ... emphasizes techniques used to isolate and clone specific genes frombacteria, plants, and animals, and methods of scaling-up the formation of the geneproduct for commercial applications ... analyzes problems encountered in scaling-upthe microprocessing of biochemical procedures . .. includes an extensive glossary andnumerous illustrations ... identifies other resource materials in the field ... and more.Presenting the fundamentals of biochemistry and molecular biology to workers andstudents in other fields, this state-of-the-art reference/text is essentiai reading fortechnologists in chemistry and engineering; biomedical, chemical, electrical andelectronics, industrial, mechanical, manufacturing, design, plant, control, civil, genetic,and environmental engineers; chemists, botanists, and zoologists; and advancedundergraduate and graduate courses in engineering, biotechnology, and industrialmicrobiology.
This unique story offers an introductory conversation to genetics, embryology and evolution, taking us on a historical journey of biology through the ages. Using a series of dialogues between the Greek philosopher Democritus and his disciple Alkimos, we travel through time visiting eminent scientists throughout the centuries, from Lazzaro Spallanzani and Theodor Boveri to Francis Crick, Max Perutz and Christiane Nusslein-Volhard. We find ourselves at the intersection of competing theories in biology and witness the progression from the debunking the theory of spontaneous generation to the mapping of the genome. Attention is given not only to the great successes in the field but also to the equally important and exciting failures.Originally published in Hungarian, The Story of Genetics, Development and Evolution provides a historical background to the life sciences, with complex scientific concepts stripped down and explained carefully for academics and anyone interested in going back to the roots and philosophies of scientific progress.Translated from: Jekely G Master, are you awake? A fictitious dialogue on genetics, development and evolution. 2006, Bratislava: Kalligram
This volume contains 31 peer-reviewed papers based on the presentations at the 7th International Annual Workshop on Bioinformatics and Systems Biology (IBSB 2007) held at the Human Genome Center, Institute of Medical Science, University of Tokyo from July 31 to August 2, 2007. This workshop started in 2001 as an event for doctoral students and young researchers to present and discuss their research results and approaches in bioinformatics and systems biology. It is part of a collaborative educational program involving leading institutions and leaders committed to the following programs and partner institutions:* Boston (Charles DeLisi) - Graduate Program in Bioinformatics, Boston University* Berlin (Herman-Georg Holzhutter) - The International Research Training Group (IRTG) "Genomics and Systems Biology of Molecular Networks"* Kyoto/Tokyo (Minoru Kanehisa/Satoru Miyano) - Joint Bioinformatics Education Program of Kyoto University and University of Tokyo.This volume is dedicated to the memory of Prof. Dr. Dr. h.c. Reinhart Heinrich, a former Professor at Humboldt University Berlin and a co-founder of this workshop.
The Mathematical Theory of Selection, Recombination, and Mutation R. Bürger University of Vienna, Austria "It is close to being a masterpiece…could well be the classic presentation of the area." Warren J. Ewens, University of Pennsylvania, USA Population genetics is concerned with the study of the genetic, ecological, and evolutionary factors that influence and change the genetic composition of populations. The emphasis here is on models that have a direct bearing on evolutionary quantitative genetics. Applications concerning the maintenance of genetic variation in quantitative traits and their dynamics under selection are treated in detail.
Comparative Genomics and Proteomics in Drug Discovery gives an overview of how emerging genomic and proteomic technologies are making significant contributions to global drug discovery programs, and in particular the key role that comparative genomics and proteomics play within this strategy. Each chapter is written by respected authorities, with hands-on experience, from both academic and pharmaceutical backgrounds.
Viruses do not behave as other microbes; their life cycles require infecting healthy cells, commandeering their cellular apparatus, replicating and then killing the host cell. Methods for virus detection and identification have been developed only in the past few decades. These recently developed methods include molecular, physical, and proteomic techniques. All these approaches (Electron Microscopy, Molecular, Direct Counting, and Mass Spectrometry Proteomics) to detection and identification are reviewed in this succinct volume. It is written in approachable language with enough detail for trained professionals to follow and want to recommend to others. Key Features Covers common detection methods Reviews the history of detection from antiquity to the present Documents the strengths and weaknesses of various detection methods Describes how to detect newly discovered viruses Recommends specific applications for clinical, hospital, environmental, and public health uses
From disease marker identification to accelerated drug development, Protein Arrays, Biochips, and Proteomics offers a detailed overview of current and emerging trends in the field of array-based proteomics. This reference focuses on innovations in protein microarrays and biochips, mass spectrometry, high-throughput protein expression, protein-protein interactions, structural proteomics, and the proteomic marketplace for comprehensive understanding of past, present, and future proteomic research. Offering an abundance of figures and charts, the book compiles a wide variety of technologies and applications ranging from functionalized chip surfaces to strategies for protein expression.
This unique story offers an introductory conversation to genetics, embryology and evolution, taking us on a historical journey of biology through the ages. Using a series of dialogues between the Greek philosopher Democritus and his disciple Alkimos, we travel through time visiting eminent scientists throughout the centuries, from Lazzaro Spallanzani and Theodor Boveri to Francis Crick, Max Perutz and Christiane Nusslein-Volhard. We find ourselves at the intersection of competing theories in biology and witness the progression from the debunking the theory of spontaneous generation to the mapping of the genome. Attention is given not only to the great successes in the field but also to the equally important and exciting failures.Originally published in Hungarian, The Story of Genetics, Development and Evolution provides a historical background to the life sciences, with complex scientific concepts stripped down and explained carefully for academics and anyone interested in going back to the roots and philosophies of scientific progress.Translated from: Jekely G Master, are you awake? A fictitious dialogue on genetics, development and evolution. 2006, Bratislava: Kalligram
The burgeoning new science of epigenetics offers a cornucopia of insights some comforting, some frightening. For example, the male fetus may be especially vulnerable to certain common chemicals in our environment, in ways that damage not only his own sperm but also the sperm of his sons. And it s epigenetics that causes identical twins to vary widely in their susceptibility to dementia and cancer. But here s the good news: unlike mutations, epigenetic effects are reversible. Indeed, epigenetic engineering is the future of medicine."
This book on medicinal plant biotechnology covers recent developments in this field. It includes a comprehensive up-to-date survey on established medicinal plants and on molecules which gained importance in recent years. No recently published book has covered these carefully selected topics. The contributing scientists have been selected on the basis of their involvement in the related plant material as evident by their internationally recognised published work.
This book entitled "Genetics, Genomics and Breeding of Bamboos" provides a comprehensive overview on the economically and ecologically important non-timber plant group bamboo. The book focuses on the most recent advances in bamboo research in diverse fields including botany, genetic resources, traditional and molecular breeding, disease and pest resistance, tissue culture and genetic transformation and genomics perspective. The different chapters are authored by internationally reputed experts on this plant and is a good source of information for students, scientists, farmers, and bamboo resource management advisers on this plant, which is gaining increase importance on international commerce.
Legumes in the Omic Era provides a timely review of recent advances in legume genomics research and application. In this post-genomic era enormous amount of biological information is available which could be of huge potential use for crop improvement applications. This aspect of genomics assisted plant breeding is focused throughout the book for all the important grain legume crops. Role of functional genomics and importance of bioinformatics tools in present day genomics and molecular breeding research is also discussed in detail. Use of molecular tools for nutritional fortification of grain legume is briefly presented. A chapter also been contributed on fungal disease resistance to elucidate potential application of genomic tools in molecular breeding of grain legume species. The book contains fifteen chapters contributed by 50 scientists from different countries who are actively involved in analyzing and improving particular legume genome. This book will serve as reference resource to legumes researchers for use of genome information in improvement of major legume crops. Dr Sanjeev Gupta is Principal Scientist/Project Coordinator-All India Coordinated Research Project on "Vigna" Crops at Indian Institute of Pulses Research (IIPR), Kanpur. He has more than two decades of research experience in grain legume breeding and developed a number of high yielding cultivars in grain legumes. He is authored numerous research papers published in peer-reviewed journals and edited several books in plant breeding aspects. He was the Organizing Secretary of the International Grain Legume Conference, 2009 held in the Indian Institute of Pulses Research, Kanpur, India. He has travelled across the continents to present his research several times. He is recipient of several awards for his research and literary contributions Dr. Nagasamy Nadarajan is the Director of the Indian Institute of Pulses Research (IIPR), Kanpur. He has more than three decades of teaching and research experience and developed more than fifteen legume and cereal cultivars. He has to his credits more than 200 peer-reviewed research publications. He has guided several graduate students for Masters and Doctoral degrees in food legume breeding and genetics research. He has authored a book in biometrics which is one of the most popular books among the agriculture graduate students in India. He is the recipient of three international and six national awards and honours for his outstanding contributions Mr. Debjyoti Sen Gupta is the ICAR International Fellow and Ph.D. candidate at North Dakota State University (NDSU), Fargo, USA. Recently, he visited Department of Crop and Soil Sciences, Washington State University, Pullman, USA for high throughput genotyping work. Before joining at NDSU he was serving as the Scientist in the Indian Institute of Pulses Research (IIPR). He has authored several research articles, review articles and book chapters in the peer-reviewed journals and books from reputed publishers like Springer, CABI etc. He is recipient of several fellowships like CSIR-JRF, New Delhi; ICAR-JRF, New Delhi throughout his graduate study programs. "
- The book discusses the recent techniques in NGS data analysis which is the most needed material by biologists (students and researchers) in the wake of numerous genomic projects and the trend toward genomic research. - The book includes both theory and practice for the NGS data analysis. So, readers will understand the concept and learn how to do the analysis using the most recent programs. - The steps of application workflows are written in a manner that can be followed for related projects. - Each chapter includes worked examples with real data available on the NCBI databases. Programming codes and outputs are accompanied with explanation. - The book content is suitable as teaching material for biology and bioinformatics students. Meets the requirements of a complete semester course on Sequencing Data Analysis Covers the latest applications for Next Generation Sequencing Covers data reprocessing, genome assembly, variant discovery, gene profiling, epigenetics, and metagenomics |
![]() ![]() You may like...
|