![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Life sciences: general issues > Genetics (non-medical)
This detailed volume provides a comprehensive resource covering the existing and state-of-the-art tools in the field of profiling chromatin accessibility and its dynamics. Beginning with a section on bulk-cell methods for profiling chromatin accessibility and nucleosome positioning that rely on enzymatic cleavage of accessible DNA and produce information about relative accessibility, the book continues with methods that use single-molecule and enzymatic approaches to solving the problem of mapping absolute occupancy/accessibility, emerging tools for mapping DNA accessibility and nucleosome positioning in single cells, imaging-based methods for visualizing accessible chromatin in its nuclear context, as well as computational methods for the processing and analysis of chromatin accessibility datasets. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step and readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and up-to-date, Chromatin Accessibility: Methods and Protocols serves as an extensive and useful reference for researchers studying different facets of chromatin accessibility in a wide variety of biological contexts. Chapter 6 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Over the last decade Life Science has undergone an accelerated evolution, culminating in the -omics era characterized by the development of a multitude of high throughput methods that are becoming more routinely applied in biochemistry labs. In Functional Genomics: Methods and Protocols, Second Edition expert researchers in the field detail many of the methods which are now commonly used for studies in the life sciences focusing on the dynamic aspects of the transcriptome, proteome and metabolome, respectively.Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Functional Genomics: Methods and Protocols, Second Edition seeks to aid scientists in establishing or extending technologies and techniques in their laboratories.
The identification of normal and breast cancer stem cells has offered a new vision of this heterogeneous disease and new hopes for its prognosis and treatment. This volume provides an overview of recent developments in mammary stem cell research and discusses the many varieties of approaches used by researchers to investigate the properties and functions of mammary stem cells. The beginning chapters provide readers with an introduction to mammary stem cells, and the processes used to characterize stem cells and isolate them via fluorescent activated cell sorting. The next few chapters discuss DNA and mRNA sequencing, proteomic techniques to help profile cells, lentiviral cell transduction for gene expression, and in vivo lineage tracing. The final few chapters are dedicated to following stem cells from their initial niche to the new microenvironment at their metastasis site, and to studying these cells using physical and mathematical approaches. Written in the highly successful Methods in Molecular Biology series format, the chapters include the kind of detailed description and implementation advice that is crucial for getting optimal results in the laboratory. Authoritative and cutting-edge, Mammary Stem Cells: Methods and Protocols aims to help members of the scientific community explore the behavior of stem cells and how to work with them in order to guide the design of new and complimentary strategies to be applied in the clinic with the ultimate end goal of fighting breast cancer.
This book highlights the latest findings and techniques related to nutrition and feed efficiency in animal agriculture. It addresses the key challenges facing the nutrition industry to achieve high animal productivity with minimal environmental impact. The concept of smart nutrition involves the use of smart technologies in the feeding and management of livestock. The first chapters focus on advances in biological fields such as molecular agriculture and genotype selection, as well as technologies that enhance or enable the collection of relevant information. The next section highlights applications of smart nutrition in a variety of livestock systems, ranging from intensive indoor housing of broilers and pigs to extensive outdoor housing of cattle and sheep, and marine fish farms. Finally, because of the worldwide attention to this issue, the authors address the environmental consequences. This work, which takes a serious look at how nutrition can be used to improve sustainability in animal agriculture, is a key literature for readers in animal and veterinary sciences, the food industry, sustainability research, and agricultural engineering.
In the past few years, antisense methodology has moved from in vitro studies to in vivo studies and first human trials. While the basic concept of antisense technology is simple, the methodological problems associated with its use are numerous and complex. Antisense- based methods have proven to be a field of research where careful attention to experimental protocols and appropriate controls is necessary. The Manual of Antisense Methodology emphasizes the application of antisense oligonucleotides, and is a guide for the identification of antisense and non-antisense effects in different experimental settings. The work is organized into three sections: antisense application in vitro, antisense application in vivo (animal models) and finally, clinical antisense studies. Where at all possible, the methods are described in sufficient detail to allow reproduction of a given experiment. The Manual of Antisense Methodology will be of interest to researchers in immunology, cancer research, pharmacology and internal medicine; and physicians conducting clinical studies in these fields.
A better "casting" could not be conceived. The authors of this book are gold smiths on the subject. I have followed their work since their "entry" into cyto genetics and I have a high esteem for them. I consider it an honour to be asked to write the preface of their opus. Paul Popescu, Directeur de Recherche at INRA, has also played a promi nent part in the development of animal cytogenetics, especially in domestic animals. He is able to tell you the cost of a translocation in a pig breeding farm or a cow population: a fortune! P. Popescu has played a great part in gene mapping of these species using "in situ DNA hybridisation". His contributions are recognised world-wide. His laboratory receives many visitors every year and it serves as a reference for domestic animal cytogenetics. Helene Hayes, Charge de Recherche at INRA, has collaborated with P. POPESCU in the elaboration of the "at hand" techniques and in many other discoveries which are listed in her bibliography. She showed the fascinating correspondence between bovine and human chromosomes and the com pared gene maps of domestic bovidae.
The genome sequences of several pseudomonads have become available in recent years and researchers are beginning to use the data to make new discoveries about this bacterium. This concise volume reviews the most current and topical aspects of Pseudomonas molecular biology and genomics and is aimed at a readership of research scientists, graduate students and other specialists. Renowned international authors have contributed chapters on diverse topics including taxonomy, genome diversity, oligonucleotide usage, polysaccharides, pathogenesis, virulence, biofilms, antibiotic resistance and iron uptake. In addition an entire chapter is devoted to the genetic tools being developed to take full advantage of the wealth of information generated by the genome sequencing efforts. This book is essential reading for anyone involved in Pseudomonas research.
Stem cells have the ability to differentiate into all types of cells within the body, thus have great therapeutic potential for regenerative medicine to treat complicated disorders, like Parkinson s disease and spinal cord injury. There will also be many applications in drug development. However, several roadblocks, such as safety issues and low efficiency of pluripotent stem cell (PSC) line derivation need to be resolved before their clinical application. This thesis focuses on these two areas, so as to find methods to overcome the limitation. It covers deriving embryonic stem cells (ESCs) from several different species and reports an efficient system to generate induced pluripotent stem cells (iPSCs), and the first iPSC mice in the world. The results in this thesis confirm that somatic cells can be fully reprogrammed with the four Yamanaka factors. In addition, we have found that the Dlk1-Dio3 region can be a potential molecular marker to distinguish the fully reprogrammed iPSCs from partially reprogrammed ones. All of these results will help improve the safety of PSCs in the clinical applications and increase the current low induction efficiency of their production."
Chromosomes Today Volume 12 records the plenary proceedings of the 12th triennial International Chromosone Conference, presenting an overview of the current concerns in the developing studies of animal, plant and human cytogenetics. As well as giving an accurate historical record of the achievements in chromosome studies, this important series points the way forword, emphasizing the areas in which new developments will take place. Volume 12 explores the complete integration of molecular biology and cytogenetics, evaluating the concensus of the world's cytogeneticists concerning the nature and activities of the chromosome.It reinforces our view of the chromosome as the genetic organelle whose structure, behaviour and modification underlie our modern concept ofeukaryote genetics.
This volume is divided in four sections; covering genome wide approaches, techniques for characterize of paRNA structural features are described, selecting pa-RNA, and paRNA therapeutic potential. Chapters describe how siRNAsdirected against paRNAs can be applied in vivo to modulate transcription of important genes controlled by paRNAs. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Promoter Associated RNA: Methods and Protocols aims to demonstrate paRNAs as new class of regulatory molecules, to further investigate and value as tools for fine transcriptional tuning.
This text is based on a set of not es produced for courses given for gradu- ate students in mathematics, computer science and biochemistry during the academic year 1998-1999 at the University of Turku in Turku and at the Royal Institute of Technology (KTH) in Stockholm. The course in Turku was organized by Professor Mats Gyllenberg's groupl and was also included 2 within the postgraduate program ComBi , a Graduate School in Compu- tational Biology, Bioinformatics, and Biometry, directed by Professor Esko Ukkonen at the University of Helsinki. The purpose of the courses was to give a thorough and systematic intro duc ti on to probabilistic modelling in bioinformatics for advanced undergraduate and graduate students who had a fairly limited background in prob ability theory, but were otherwise well trained in mathematics and were already familiar with at least some of the techniques of algorithmic sequence analysis. Portions of the material have also been lectured at shorter graduate courses and seminars both in Finland and in Sweden. The initial set of notes circulated also for a time outside those two countries via the World Wide Web. The intermediate course in probability theory and techniques of discrete mathematics held by the author at the University College of Sodertorn (Hud- dinge, Sweden) during the academic year 1997-1998 has also influenced the presentation. The opportunity to give this course is hereby gratefully ac- knowledged.
This volume covers a wide range of various fields of research, with the common thread being Next Generation Sequencing (NGS) related methods and applications, as well as analysis and interpretation of the data obtained. Chapters guide readers through the highly dynamic processes of translational and transcriptional profiling of a cell, method to detect copy number alterations (CNAs), targeted sequencing applications, method called "Hi-Plex" to characterize known polymorphic loci, single-cell of DNA or RNA, identify and characterize rare circulating CD4 T cells, and computational pipeline for RNAseq analysis. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Next Generation Sequencing: Methods and Protocols aims to be useful and informative for further study into this vital field.
Although numerous studies have been made of the Western educated political elite of colonial Nigeria in particular, and of Africa in general, very few have approached the study from a perspective that analyzes the impacts of indigenous institutions on the lives, values, and ideas of these individuals. This book is about the diachronic impact of indigenous and Western agencies in the upbringing, socialization, and careers of the colonial Igbo political elite of southeastern Nigeria. The thesis argues that the new elite manifests the continuity of traditions and culture and therefore their leadership values and the impact they brought on African society cannot be fully understood without looking closely at their lived experiences in those indigenous institutions where African life coheres. The key has been to explore this question at the level of biography, set in the context of a carefully reconstructed social history of the particular local communities surrounding the elite figures. It starts from an understanding of their family and village life, and moves forward striving to balance the familiar account of these individuals in public life, with an account of the ongoing influences from family, kinship, age grades, marriage and gender roles, secret societies, the church, local leaders and others. The result is not only a model of a new approach to African elite history, but also an argument about how to understand these emergent leaders and their peers as individuals who shared with their fellow Africans a dynamic and complex set of values that evolved over the six decades of colonialism.
Y.A. Berlin, I.V. Kurnikow, D. Beratan, M.A. Ratner, A.L. Burin: DNA Electron Transfer Processes: Some Theoretical Notions; N. Rosch, A.A. Voityuk: Quantum Chemical Calculation of Donor-Acceptor Coupling for Charge Transfer in DNA; E. Conwell: Polarons and Transport in DNA; Z. Cai, M.D.
The generality and quantitative extent of alternative splicing have only now begun to be fully appreciated. The first draft of the complete human genome led to the surprisingly low figure of about 32,000 genes. The extensive use of alternative splicing and its consequences in terms of coding capacity could account for this discrepancy and help fill the complexity gap between the genome and the proteome. After a computer-based assessment of the frequency of alternative splicing, this book addresses mechanistic aspects followed by examples of its involvement in important cellular processes. Finally, it raises the possibility of artificial modulation of alternative splicing by antisense nucleotides.
Quantitative trait locus (QTL) mapping is used to discover the genetic and molecular architecture underlying complex quantitative traits. It has important applications in agricultural, evolutionary, and biomedical research. R/qtl is an extensible, interactive environment for QTL mapping in experimental crosses. It is implemented as a package for the widely used open source statistical software R and contains a diverse array of QTL mapping methods, diagnostic tools for ensuring high-quality data, and facilities for the fit and exploration of multiple-QTL models, including QTL x QTL and QTL x environment interactions. This book is a comprehensive guide to the practice of QTL mapping and the use of R/qtl, including study design, data import and simulation, data diagnostics, interval mapping and generalizations, two-dimensional genome scans, and the consideration of complex multiple-QTL models. Two moderately challenging case studies illustrate QTL analysis in its entirety. The book alternates between QTL mapping theory and examples illustrating the use of R/qtl. Novice readers will find detailed explanations of the important statistical concepts and, through the extensive software illustrations, will be able to apply these concepts in their own research. Experienced readers will find details on the underlying algorithms and the implementation of extensions to R/qtl. There are 150 figures, including 90 in full color.
Resident Stem Cells and Regenerative Therapy: Sources and Clinical Applications, Second Edition presents the main findings to date and the important factors to be considered when contemplating resident stem cells in regenerative therapies. Chapters on cardiac, brain, neural, liver, kidney, skeletal muscle, bone, pancreatic, skin and lung resident stem cells will assist in defining the level of success that has been achieved and the direction for the road ahead. With contributions from leading laboratories, open questions related to resident stem cells and regenerative therapies will also be presented for debate. In the last several decades, stem cells have greatly impacted the scientific and lay communities, providing huge advances in the treatment of devastating human diseases, including myocardial infarction, diabetes, muscular dystrophy, cystic fibrosis, cirrhosis, and osteoporosis. Alongside debates of induced pluripotent stem cells and embryonic stem cells has been the discovery of adult stem cells in many different tissues. While these organ resident or progenitor stem cells offer prospects to contribute to tissue regeneration, they also present challenges because of the complexity of organ structures.
This book is about Saffron (Crocus sativus L.) that is the most expensive spice in the world. Though there are other books on saffron but none of them has comprehensive information on saffron genome, transcriptome, proteome, metabolome and microbiome. The book has been divided into five sections and 17 chapters that cover all the areas related to its cultivation, market & economy, genomics, transcriptomics, proteomics, metabolomics, tissue culture, microbiomics, metagenomics etc. In addition a chapter on molecular markers and their use in molecular genetic mapping in saffron that lacks genetic diversity as a sterile plant paves a way for selection of elite varieties based on the epigenetic variability. A section on in-vitro propagation elaborates on the corm production under controlled conditions. In summary this book encompasses most of the information available on this golden spice
Protein Glycosylation provides clear, up-to-date, and integrated coverage of key topics in this field. Particular emphasis is placed on the biosynthetic pathways that result in a wide variety of identified protein-bound oligosaccharides. Protein Glycosylation begins with an overview of the chemical structures of mono- and oligosaccharides, to provide a scientific basis for the later chapters. The book includes discussions on the purification, function, and enzyme kinetics of selected glycosidases and glycotransferases, as well as a review of the roles of oligosaccharides in glycoprotein function and the in vivo role of glycoproteins themselves. Finally, the in vitro synthesis of glycoproteins is presented, together with future directions in glycobiology. Protein Glycosylation serves as an excellent text for upper-level undergraduate and graduate students as well as a reference for those scientists whose training is not in glycobiology but who are moving into this field.
This detailed volume focuses on genotyping and validation in addition to information on how to produce gene edited cells and animals for research. Future advances in biomedical research will benefit greatly from the use of precise gene targeting of transgenes in the genome as CRISPR technology supersedes earlier methods that relied on random transgene integration, which this collection reflects. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step and readily reproducible laboratory protocols, as well as tips for troubleshooting and avoiding known pitfalls. Authoritative and practical, Transgenesis: Methods and Protocols serves as an ideal guide for researchers working with or working on genetically modified models.
This volume provides a collection of protocols from researchers in the statistical genomics field. Chapters focus on integrating genomics with other “omics” data, such as transcriptomics, epigenomics, proteomics, metabolomics, and metagenomics. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and thorough, Statistical Genomics hopes that by covering these diverse and timely topics researchers are provided insights into future directions and priorities of pan-omics and the precision medicine era.
The book comes during a time of rapid expansion in molecular technology-based selection approaches that are destined to modify or supplement conventional breeding methodology. The new technologies will allow genetic and physiological factors influencing sugar yield and quality to be assessed in great detail and manipulated. These novel techniques will also reduce the dependence of the sugar beet crop on chemical pesticides and fertilizers by using unique and improved resistance mechanisms against the various abiotic stresses and diseases and by producing varieties that use soil resources more efficiently. A whole chapter deals with the current information on the development of these new techniques and their integration into sugar beet breeding.
- The book discusses the recent techniques in NGS data analysis which is the most needed material by biologists (students and researchers) in the wake of numerous genomic projects and the trend toward genomic research. - The book includes both theory and practice for the NGS data analysis. So, readers will understand the concept and learn how to do the analysis using the most recent programs. - The steps of application workflows are written in a manner that can be followed for related projects. - Each chapter includes worked examples with real data available on the NCBI databases. Programming codes and outputs are accompanied with explanation. - The book content is suitable as teaching material for biology and bioinformatics students. Meets the requirements of a complete semester course on Sequencing Data Analysis Covers the latest applications for Next Generation Sequencing Covers data reprocessing, genome assembly, variant discovery, gene profiling, epigenetics, and metagenomics |
![]() ![]() You may like...
Jewish Translation - Translating…
Magdalena Waligorska, Tara Kohn
Paperback
|