![]() |
![]() |
Your cart is empty |
||
Books > Earth & environment > Geography > Cartography, geodesy & geographic information systems (GIS) > Geographical information systems (GIS)
This is the eleventh volume in the series Light Scattering Reviews, devoted to current knowledge of light scattering problems and both experimental and theoretical research techniques related to their solution. The focus of this volume is to describe modern advances in radiative transfer and light scattering optics. This book brings together the most recent studies on light radiative transfer in the terrestrial atmosphere, while also reviewing environmental polarimetry. The book is divided into nine chapters: * the first four chapters review recent advances in modern radiative transfer theory and provide detailed descriptions of radiative transfer codes (e.g., DISORT and CRTM). Approximate solutions of integro-differential radiative transfer equations for turbid media with different shapes (spheres, cylinders, planeparallel layers) are detailed; * chapters 5 to 8 focus on studies of light scattering by single particles and radially inhomogeneous media; * the final chapter discusses the environmental polarimetry of man-made objects.
How does one determine how similar two maps are? This book aims at the theory of spatial similarity relations and its application in automated map generalization, including the definitions, classification and features of spatial similarity relations. Included also are calculation models of spatial similarity relations between arbitrary individual objects and between arbitrary object groups, and the application of the theory in the automation of the algorithms and procedures in map generalization.
These Proceedings present selected research papers from CSNC2016, held during 18th-20th May in Changsha, China. The theme of CSNC2016 is Smart Sensing, Smart Perception. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS), and the latest progress made in the China BeiDou System (BDS) especially. They are divided into 12 topics to match the corresponding sessions in CSNC2016, which broadly covered key topics in GNSS. Readers can learn about the BDS and keep abreast of the latest advances in GNSS techniques and applications.
A significant part of understanding how people use geographic information and technology concerns human cognition. This book provides the first comprehensive in-depth examination of the cognitive aspects of human-computer interaction for geographic information systems (GIS). Cognitive aspects are treated in relation to individual, group, behavioral, institutional, and cultural perspectives. Extensions of GIS in the form of spatial decision support systems and SDSS for groups are part of the geographic information technology considered. Audience: Geographic information users, systems analysts and system designers, researchers in human-computer interaction will find this book an information resource for understanding cognitive aspects of geographic information technology use, and the methods appropriate for examining this use.
Neural nets offer a new strategy for spatial analysis, and their application holds enormous potential for the geographic sciences. However, the number of studies that have utilized these techniques is limited. This lack of interest can be attributed, in part, to lack of exposure, to the use of extensive and often confusing jargon, and to the misapprehension that, without an underlying statistical model, the explanatory power of the neural net is very low. This text attacks all three issues, demonstrating a wide variety of neural net applications in geography in a simple manner, with minimal jargon. The volume presents an introduction to neural nets that describes some of the basic concepts, as well as providing a more mathematical treatise for those wanting further details on neural net architecture. The bulk of the text, however, is devoted to descriptions of neural net applications in such broad-ranging fields as census analysis, predicting the spread of AIDS, describing synoptic controls on mountain snowfall, examining the relationships between atmospheric circulation and tropical rainfall, and the remote sensing of polar cloud and sea ice characteristics. The text illustrates neural nets employed in modes analogous to multiple regression analysis, cluster analysis, and maximum likelihood classification. Not only are the neural nets shown to be equal or superior to these more conventional methods, particularly where the relationships have a strong nonlinear component, but they are also shown to contain significant explanatory power. Several chapters demonstrate that the nets themselves can be decomposed to illuminate causative linkages between different events in both the physical and human environments.
The combined observational power of the multiple earth observing satellites is currently not being harnessed holistically to produce more durable societal benefits. We are not able to take complete advantage of the prolific amount of scientific output and remote sensing data that are emerging rapidly from satellite missions and convert them quickly into decision-making products for users. The current application framework we have appears to be an analog one lacking the absorption bandwidth required to handle scientific research and the voluminous (petabyte-scale) satellite data. This book will tackle this question: "How do we change this course and take full advantage of satellite observational capability for a more sustainable, happier and safer future in the coming decades?"
This book explores the impact of augmenting novel architectural designs with hardware-based application accelerators. The text covers comprehensive aspects of the applications in Geographic Information Science, remote sensing and deploying Modern Accelerator Technologies (MAT) for geospatial simulations and spatiotemporal analytics. MAT in GIS applications, MAT in remotely sensed data processing and analysis, heterogeneous processors, many-core and highly multi-threaded processors and general purpose processors are also presented. This book includes case studies and closes with a chapter on future trends. Modern Accelerator Technologies for GIS is a reference book for practitioners and researchers working in geographical information systems and related fields. Advanced-level students in geography, computational science, computer science and engineering will also find this book useful.
The book will provide an overview of the practical application of remote sensing for the purposes of nature conservation as developed by ecologists in collaboration with remote sensing specialists, providing guidance on all phases from the planning of remote sensing projects for conservation to the interpretation and validation of the images. This book and linked activities have been selected as finalists of the European Natura 2000 award 2020.https://natura2000award-application.eu/finalist/3126
* This book is an updated version of a well-received book previously published in Chinese by Science Press of China (the first edition in 2006 and the second in 2013). It offers a systematic and practical overview of spatial data mining, which combines computer science and geo-spatial information science, allowing each field to profit from the knowledge and techniques of the other. To address the spatiotemporal specialties of spatial data, the authors introduce the key concepts and algorithms of the data field, cloud model, mining view, and Deren Li methods. The data field method captures the interactions between spatial objects by diffusing the data contribution from a universe of samples to a universe of population, thereby bridging the gap between the data model and the recognition model. The cloud model is a qualitative method that utilizes quantitative numerical characters to bridge the gap between pure data and linguistic concepts. The mining view method discriminates the different requirements by using scale, hierarchy, and granularity in order to uncover the anisotropy of spatial data mining. The Deren Li method performs data preprocessing to prepare it for further knowledge discovery by selecting a weight for iteration in order to clean the observed spatial data as much as possible. In addition to the essential algorithms and techniques, the book provides application examples of spatial data mining in geographic information science and remote sensing. The practical projects include spatiotemporal video data mining for protecting public security, serial image mining on nighttime lights for assessing the severity of the Syrian Crisis, and the applications in the government project 'the Belt and Road Initiatives'.
This book provides an information fusion model with information fusion theory, geographic information system technology and modern mathematical methods to evaluate the risks of groundwater inrushes from aquifers underlying coal seams. In this new model, the water inrush vulnerable index was calculated with variable weights theory. It overcomes the defect of the traditional vulnerability index method that assumes constant weights for the factors controlling the water inrush. Mine water inrush events often occur during coal mine construction and production; they account for a large proportion of the nation's coal mine disasters and accidents in China. Between 2005 and 2014, 513 water inrush incidents have occurred with a total loss of 2,753 lives. As mining depths and mining intensity continue to increase, the hydrogeological conditions encountered are becoming more complex. The innovative model presented here was applied to two coal mines in China with proved better results than the traditional vulnerability index method.
Advancements in digital sensor technology, digital image analysis techniques, as well as computer software and hardware have brought together the fields of computer vision and photogrammetry, which are now converging towards sharing, to a great extent, objectives and algorithms. The potential for mutual benefits by the close collaboration and interaction of these two disciplines is great, as photogrammetric know-how can be aided by the most recent image analysis developments in computer vision, while modern quantitative photogrammetric approaches can support computer vision activities. Devising methodologies for automating the extraction of man-made objects (e.g. buildings, roads) from digital aerial or satellite imagery is an application where this cooperation and mutual support is already reaping benefits. The valuable spatial information collected using these interdisciplinary techniques is of improved qualitative and quantitative accuracy. This book offers a comprehensive selection of high-quality and in-depth contributions from world-wide leading research institutions, treating theoretical as well as implementational issues, and representing the state-of-the-art on this subject among the photogrammetric and computer vision communities.
These proceedings present selected research papers from CSNC 2018, held during 23rd-25th May in Harbin, China. The theme of CSNC 2018 is Location, Time of Augmentation. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS), and the latest progress made in the China BeiDou System (BDS) especially. They are divided into 12 topics to match the corresponding sessions in CSNC 2018, which broadly covered key topics in GNSS. Readers can learn about the BDS and keep abreast of the latest advances in GNSS techniques and applications.
The ability to extract generic 3D objects from images is a crucial step towards automation of a variety of problems in cartographic database compilation, industrial inspection and assembly, and autonomous navigation. Many of these problem domains do not have strong constraints on object shape or scene content, presenting serious obstacles for the development of robust object detection and delineation techniques. Geometric Constraints for Object Detection and Delineation addresses these problems with a suite of novel methods and techniques for detecting and delineating generic objects in images of complex scenes, and applies them to the specific task of building detection and delineation from monocular aerial imagery. PIVOT, the fully automated system implementing these techniques, is quantitatively evaluated on 83 images covering 18 test scenes, and compared to three existing systems for building extraction. The results highlight the performance improvements possible with rigorous photogrammetric camera modeling, primitive-based object representations, and geometric constraints derived from their combination. PIVOT's performance illustrates the implications of a clearly articulated set of philosophical principles, taking a significant step towards automatic detection and delineation of 3D objects in real-world environments. Geometric Constraints for Object Detection and Delineation is suitable as a textbook or as a secondary text for a graduate-level course, and as a reference for researchers and practitioners in industry.
The availability of new high resolution satellite data brings with it the need for new image analysis methods. Traditional pixel-oriented algorithms do not give credit to the spatial coherence of high resolution imagery. In particular, for detection and classification of man-made structures, object-based procedures are much more appropriate. The use of object features such as scale, compactness, orientation and texture, in addition to spectral characteristics, extends the possibilities of remote sensing satellite image analysis considerably.This book describes recent progress in object-based image interpretation, and also presents many new results in its application to verification of nuclear non-proliferation.
This doctoral thesis applies measurements of ground deformation from satellite radar using their potential to play a key role in understanding volcanic and magmatic processes throughout the eruption cycle. However, making these measurements is often problematic, and the processes driving ground deformation are commonly poorly understood. These problems are approached in this thesis in the context of the Cascades Volcanic Arc. From a technical perspective, the thesis develops a new way of using regional-scale weather models to assess a priori the influence of atmospheric uncertainties on satellite measurements of volcano deformation, providing key parameters for volcano monitoring. Next, it presents detailed geodetic studies of two volcanoes in northern California: Medicine Lake Volcano and Lassen Volcanic Centre. Finally, the thesis combines geodetic constraints with petrological inputs to develop a thermal model of cooling magma intrusions. The novelty and range of topics covered in this thesis mean that it is a seminal work in volcanic and magmatic studies.
A universal approach to the ontology of geographic space has already been, and is going to be, a comprehensive task for establishing more effective spatial models. The concept of a universal spatial ontology should be independent of location, culture, and time. It should be fundamental and universal in the same way that the number p defines the ratio between the diameter and the circumference of a circle. The term universal therefore means all-embracing and for general propose. Universal Ontology of Geographic Space: Semantic Enrichment for Spatial Data aims to escalate the current scope of research to support the development of semantically interoperable systems of geographic space. This reference will aid university lecturers and professors, students, researchers, developers of spatial applications.
China Satellite Navigation Conference (CSNC) 2015 Proceedings presents selected research papers from CSNC2015, held during 13th-15th May in Xian, China. The theme of CSNC2015 is Opening-up, Connectivity and Win-win. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS), and the latest progress made in the China BeiDou System (BDS) especially. They are divided into 10 topics to match the corresponding sessions in CSNC2015, which broadly covered key topics in GNSS. Readers can learn about the BDS and keep abreast of the latest advances in GNSS techniques and applications. SUN Jiadong is the Chief Designer of the Compass/ BDS, and the academician of Chinese Academy of Sciences (CAS); LIU Jingnan is a professor at Wuhan University. FAN Shiwei is a researcher at China Satellite Navigation Office; LU Xiaochun is an academician of Chinese Academy of Sciences (CAS).
This book maximizes reader insights into the field of mathematical models and methods for the processing of two-dimensional remote sensing images. It presents a broad analysis of the field, encompassing passive and active sensors, hyperspectral images, synthetic aperture radar (SAR), interferometric SAR, and polarimetric SAR data. At the same time, it addresses highly topical subjects involving remote sensing data types (e.g., very high-resolution images, multiangular or multiresolution data, and satellite image time series) and analysis methodologies (e.g., probabilistic graphical models, hierarchical image representations, kernel machines, data fusion, and compressive sensing) that currently have primary importance in the field of mathematical modelling for remote sensing and image processing. Each chapter focuses on a particular type of remote sensing data and/or on a specific methodological area, presenting both a thorough analysis of the previous literature and a methodological and experimental discussion of at least two advanced mathematical methods for information extraction from remote sensing data. This organization ensures that both tutorial information and advanced subjects are covered. With each chapter being written by research scientists from (at least) two different institutions, it offers multiple professional experiences and perspectives on each subject. The book also provides expert analysis and commentary from leading remote sensing and image processing researchers, many of whom serve on the editorial boards of prestigious international journals in these fields, and are actively involved in international scientific societies. Providing the reader with a comprehensive picture of the overall advances and the current cutting-edge developments in the field of mathematical models for remote sensing image analysis, this book is ideal as both a reference resource and a textbook for graduate and doctoral students as well as for remote sensing scientists and practitioners.
Wildland fires are becoming one of the most critical environmental factors affecting a wide range of ecosystems worldwide. In Mediterranean ecosystems (including also South-Africa, California, parts of Chile and Australia), wildland fires are recurrent phenomena every summer, following the seasonal drought. As a result of changes in traditional land use practices, and the impact of recent climate warming, fires have more negative impacts in the last years, threatening lives, socio-economic and ecological values. The book describes the ecological context of fires in the Mediterranean ecosystems, and provides methods to observe fire danger conditions and fire impacts using Earth Observation and Geographic Information System technologies.
This book contains a selection of the best articles presented at the CUPUM (Computational Urban Planning and Urban Management) conference, held in the second week of July 2019 at the University of Wuhan, China. The chapters included were selected based on a double-blind review process involving external reviewers.
This book constitutes the first single-volume, English-language treatise on electromagnetic wave propagation across the frequency spectrum.
These Proceedings present selected research papers from CSNC2016, held during 18th-20th May in Changsha, China. The theme of CSNC2016 is Smart Sensing, Smart Perception. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS), and the latest progress made in the China BeiDou System (BDS) especially. They are divided into 12 topics to match the corresponding sessions in CSNC2016, which broadly covered key topics in GNSS. Readers can learn about the BDS and keep abreast of the latest advances in GNSS techniques and applications.
Metadata play a fundamental role in both DLs and SDIs. Commonly defined as "structured data about data" or "data which describe attributes of a resource" or, more simply, "information about data," it is an essential requirement for locating and evaluating available data. Therefore, this book focuses on the study of different metadata aspects, which contribute to a more efficient use of DLs and SDIs. The three main issues addressed are: the management of nested collections of resources, the interoperability between metadata schemas, and the integration of information retrieval techniques to the discovery services of geographic data catalogs (contributing in this way to avoid metadata content heterogeneity).
"China Satellite Navigation Conference (CSNC) 2014 Proceedings "presents selected research papers from CSNC2014, held on 21-23 May in Nanjing, China. The theme of CSNC2014 is 'BDS Application: Innovation, Integration and Sharing'. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS) and the latest progress made in the China BeiDou System (BDS) especially. They are divided into 9 topics to match the corresponding sessions in CSNC2014, which broadly covered key topics in GNSS. Readers can learn about the BDS and keep abreast of the latest advances in GNSS techniques and applications. SUN Jiadong is the Chief Designer of the Compass/ BDS, and the Academician of Chinese Academy of Sciences (CAS); JIAO Wenhai is a researcher at China Satellite Navigation Office; WU Haitao is a professor at Navigation Headquarters, CAS; LU Mingquan is a professor at Department of Electronic Engineering of Tsinghua University. |
![]() ![]() You may like...
Web Services - Concepts, Methodologies…
Information Reso Management Association
Hardcover
R9,720
Discovery Miles 97 200
An Introduction to XML and Web…
Anders Moller, Michael Schwartzbach
Paperback
R2,721
Discovery Miles 27 210
|