![]() |
![]() |
Your cart is empty |
||
Books > Reference & Interdisciplinary > Communication studies > Information theory
High performance computing consumes and generates vast amounts of data, and the storage, retrieval, and transmission of this data are major obstacles to effective use of computing power. Challenges inherent in all of these operations are security, speed, reliability, authentication and reproducibility. This workshop focused on a wide variety of technical results aimed at meeting these challenges. Topics ranging from the mathematics of coding theory to the practicalities of copyright preservation for Internet resources drew spirited discussion and interaction among experts in diverse but related fields. We hope this volume contributes to continuing this dialogue.
Whether costs are to be reduced, profits to be maximized, or scarce resources to be used wisely, optimization methods are available to guide decision making. In online optimization the main issue is incomplete data, and the scientific challenge: How well can an online algorithm perform? Can one guarantee solution quality, even without knowing all data in advance? In real-time optimization there is an additional requirement, decisions have to be computed very fast in relation to the time frame of the instance we consider. Online and real-time optimization problems occur in all branches of optimization. These areas have developed their own techniques but they are addressing the same issues: quality, stability, and robustness of the solutions. To fertilize this emerging topic of optimization theory and to foster cooperation between the different branches of optimization, the Deutsche Forschungsgemeinschaft (DFG) has supported a Priority Programme "Online Optimization of Large Systems".
New information technologies enable us to interact with each other in totally new ways. The Interaction Society: Theories, Practice and Supportive Technologies provides readers with a rich overview of the emerging interaction society enabled by these new information and communication technologies (ICT). Readers will gain a theoretically deep understanding of the core issues related to the character of the emerging interaction society, be exposed to empirical case studies that can help to understand the impact of this emergence through analysis of concrete examples, and benefit from descriptions of concrete design projects aimed at designing new novel information technologies to support activities in the interaction society.
Most machine learning research has been concerned with the development of systems that implememnt one type of inference within a single representational paradigm. Such systems, which can be called monostrategy learning systems, include those for empirical induction of decision trees or rules, explanation-based generalization, neural net learning from examples, genetic algorithm-based learning, and others. Monostrategy learning systems can be very effective and useful if learning problems to which they are applied are sufficiently narrowly defined. Many real-world applications, however, pose learning problems that go beyond the capability of monostrategy learning methods. In view of this, recent years have witnessed a growing interest in developing multistrategy systems, which integrate two or more inference types and/or paradigms within one learning system. Such multistrategy systems take advantage of the complementarity of different inference types or representational mechanisms. Therefore, they have a potential to be more versatile and more powerful than monostrategy systems. On the other hand, due to their greater complexity, their development is significantly more difficult and represents a new great challenge to the machine learning community. Multistrategy Learning contains contributions characteristic of the current research in this area.
This book focuses on information geometry manifolds of structured data/information and their advanced applications featuring new and fruitful interactions between several branches of science: information science, mathematics and physics. It addresses interrelations between different mathematical domains like shape spaces, probability/optimization & algorithms on manifolds, relational and discrete metric spaces, computational and Hessian information geometry, algebraic/infinite dimensional/Banach information manifolds, divergence geometry, tensor-valued morphology, optimal transport theory, manifold & topology learning, and applications like geometries of audio-processing, inverse problems and signal processing. The book collects the most important contributions to the conference GSI'2017 - Geometric Science of Information.
This volume constitutes a comprehensive self-contained course on source encoding. This is a rapidly developing field and the purpose of this book is to present the theory from its beginnings to the latest developments, some of which appear in book form for the first time. The major differences between this volume and previously published works is that here information retrieval is incorporated into source coding instead of discussing it separately. Second, this volume places an emphasis on the trade-off between complexity and the quality of coding; i.e. what is the price of achieving a maximum degree of data compression? Third, special attention is paid to universal families which contain a good compressing map for every source in a set. The volume presents a new algorithm for retrieval, which is optimal with respect to both program length and running time, and algorithms for hashing and adaptive on-line compressing. All the main tools of source coding and data compression such as Shannon, Ziv--Lempel, Gilbert--Moore codes, Kolmogorov complexity epsilon-entropy, lexicographic and digital search, are discussed. Moreover, data compression methods are described for developing short programs for partially specified Boolean functions, short formulas for threshold functions, identification keys, stochastic algorithms for finding the occurrence of a word in a text, and T-independent sets. For researchers and graduate students of information theory and theoretical computer science. The book will also serve as a useful reference for communication engineers and database designers.
This book focuses on new and emerging data mining solutions that offer a greater level of transparency than existing solutions. Transparent data mining solutions with desirable properties (e.g. effective, fully automatic, scalable) are covered in the book. Experimental findings of transparent solutions are tailored to different domain experts, and experimental metrics for evaluating algorithmic transparency are presented. The book also discusses societal effects of black box vs. transparent approaches to data mining, as well as real-world use cases for these approaches.As algorithms increasingly support different aspects of modern life, a greater level of transparency is sorely needed, not least because discrimination and biases have to be avoided. With contributions from domain experts, this book provides an overview of an emerging area of data mining that has profound societal consequences, and provides the technical background to for readers to contribute to the field or to put existing approaches to practical use.
The book is a collection of peer-reviewed scientific papers submitted by active researchers in the 36th National System Conference (NSC 2012). NSC is an annual event of the Systems Society of India (SSI), primarily oriented to strengthen the systems movement and its applications for the welfare of humanity. A galaxy of academicians, professionals, scientists, statesman and researchers from different parts of the country and abroad are invited to attend the Conference. The book presents various research articles in the area of system modelling in all disciplines of engineering sciences as well as socio-economic systems. The book can be used as a tool for further research.
Information is a recognized fundamental notion across the sciences
and humanities, which is crucial to understanding physical
computation, communication, and human cognition. The Philosophy of
Information brings together the most important perspectives on
information. It includes major technical approaches, while also
setting out the historical backgrounds of information as well as
its contemporary role in many academic fields. Also, special
unifying topics are high-lighted that play across many fields,
while we also aim at identifying relevant themes for philosophical
reflection. There is no established area yet of Philosophy of
Information, and this Handbook can help shape one, making sure it
is well grounded in scientific expertise. As a side benefit, a book
like this can facilitate contacts and collaboration among diverse
academic milieus sharing a common interest in information.
This book highlights current research into virtual tutoring software and presents a case study of the design and application of a social tutor for children with autism. Best practice guidelines for developing software-based educational interventions are discussed, with a major emphasis on facilitating the generalisation of skills to contexts outside of the software itself, and on maintaining these skills over time. Further, the book presents the software solution Thinking Head Whiteboard, which provides a framework for families and educators to create unique educational activities utilising virtual character technology and customised to match learners' needs and interests. In turn, the book describes the development and evaluation of a social tutor incorporating multiple life-like virtual humans, leading to an exploration of the lessons learned and recommendations for the future development of related technologies.
This book compiles recent developments on sliding mode control theory and its applications. Each chapter presented in the book proposes new dimension in the sliding mode control theory such as higher order sliding mode control, event triggered sliding mode control, networked control, higher order discrete-time sliding mode control and sliding mode control for multi-agent systems. Special emphasis has been given to practical solutions to design involving new types of sliding mode control. This book is a reference guide for graduate students and researchers working in the domain for designing sliding mode controllers. The book is also useful to professional engineers working in the field to design robust controllers for various applications.
This book provides an introductory yet rigorous treatment of Pontryagin's Maximum Principle and its application to optimal control problems when simple and complex constraints act on state and control variables, the two classes of variable in such problems. The achievements resulting from first-order variational methods are illustrated with reference to a large number of problems that, almost universally, relate to a particular second-order, linear and time-invariant dynamical system, referred to as the double integrator. The book is ideal for students who have some knowledge of the basics of system and control theory and possess the calculus background typically taught in undergraduate curricula in engineering. Optimal control theory, of which the Maximum Principle must be considered a cornerstone, has been very popular ever since the late 1950s. However, the possibly excessive initial enthusiasm engendered by its perceived capability to solve any kind of problem gave way to its equally unjustified rejection when it came to be considered as a purely abstract concept with no real utility. In recent years it has been recognized that the truth lies somewhere between these two extremes, and optimal control has found its (appropriate yet limited) place within any curriculum in which system and control theory plays a significant role.
The idea about this book has evolved during the process of its preparation as some of the results have been achieved in parallel with its writing. One reason for this is that in this area of research results are very quickly updated. Another is, possibly, that a strong, unchallenged theoretical basis in this field still does not fully exist. From other hand, the rate of innovation, competition and demand from different branches of industry (from biotech industry to civil and building engineering, from market forecasting to civil aviation, from robotics to emerging e-commerce) is increasingly pressing for more customised solutions based on learning consumers behaviour. A highly interdisciplinary and rapidly innovating field is forming which focus is the design of intelligent, self-adapting systems and machines. It is on the crossroads of control theory, artificial and computational intelligence, different engineering disciplines borrowing heavily from the biology and life sciences. It is often called intelligent control, soft computing or intelligent technology. Some other branches have appeared recently like intelligent agents (which migrated from robotics to different engineering fields), data fusion, knowledge extraction etc., which are inherently related to this field. The core is the attempts to enhance the abilities of the classical control theory in order to have more adequate, flexible, and adaptive models and control algorithms.
Regulation of the Power Sector is a unified, consistent and comprehensive treatment of the theories and practicalities of regulation in modern power-supply systems. The need for generation to occur at the time of use occasioned by the impracticality of large-scale electricity storage coupled with constant and often unpredictable changes in demand make electricity-supply systems large, dynamic and complex and their regulation a daunting task. Arranged in four parts, this book addresses both traditional regulatory frameworks and also liberalized and re-regulated environments. First, an introduction gives a full characterization of power supply including engineering, economic and regulatory viewpoints. The second part presents the fundamentals of regulation and the third looks at the regulation of particular components of the power sector in detail. Advanced topics and subjects still open or subject to dispute form the content of Part IV. In a sector where regulatory design is the key driver of both the industry efficiency and the returns on investment, Regulation of the Power Sector is directed at regulators, policy decision makers, business managers and researchers. It is a pragmatic text, well-tested by the authors' quarter-century of experience of power systems from around the world. Power system professionals and students at all levels will derive much benefit from the authors' wealth of blended theory and real-world-derived know-how.
Revised and updated, this concise new edition of the pioneering book on multidimensional signal processing is ideal for a new generation of students. Multidimensional systems or m-D systems are the necessary mathematical background for modern digital image processing with applications in biomedicine, X-ray technology and satellite communications. Serving as a firm basis for graduate engineering students and researchers seeking applications in mathematical theories, this edition eschews detailed mathematical theory not useful to students. Presentation of the theory has been revised to make it more readable for students, and introduce some new topics that are emerging as multidimensional DSP topics in the interdisciplinary fields of image processing. New topics include Groebner bases, wavelets, and filter banks.
This book introduces a comprehensive and mathematically rigorous controller design for families of nonlinear systems with time-varying parameters and unstructured uncertainties. Although the presented methodology is general, the specific family of systems considered is the latest, NextGen, unconventional fixed-wing unmanned aircraft with circulation control or morphing wings, or a combination of both. The approach considers various sources of model and parameter uncertainty, while the controller design depends not on a nominal plant model, but instead on a family of admissible plants. In contrast to existing controller designs that consider multiple models and multiple controllers, the proposed approach is based on the 'one controller fits all models' within the unstructured uncertainty interval. The book presents a modeling-based analysis and synthesis approach with additive uncertainty weighting functions for accurate realization of the candidate systems. This differs significantly from existing designs in that it is capable of handling time-varying characteristics. This research monograph is suitable for scientists, engineers, researchers and graduate students with a background in control system theory who are interested in complex engineering nonlinear systems.
This book shows how the Bayesian Approach (BA) improves well known heuristics by randomizing and optimizing their parameters. That is the Bayesian Heuristic Approach (BHA). The ten in-depth examples are designed to teach Operations Research using Internet. Each example is a simple representation of some impor tant family of real-life problems. The accompanying software can be run by remote Internet users. The supporting web-sites include software for Java, C++, and other lan guages. A theoretical setting is described in which one can discuss a Bayesian adaptive choice of heuristics for discrete and global optimization prob lems. The techniques are evaluated in the spirit of the average rather than the worst case analysis. In this context, "heuristics" are understood to be an expert opinion defining how to solve a family of problems of dis crete or global optimization. The term "Bayesian Heuristic Approach" means that one defines a set of heuristics and fixes some prior distribu tion on the results obtained. By applying BHA one is looking for the heuristic that reduces the average deviation from the global optimum. The theoretical discussions serve as an introduction to examples that are the main part of the book. All the examples are interconnected. Dif ferent examples illustrate different points of the general subject. How ever, one can consider each example separately, too."
The book presents findings, views and ideas on what exact problems of image processing, pattern recognition and generation can be efficiently solved by cellular automata architectures. This volume provides a convenient collection in this area, in which publications are otherwise widely scattered throughout the literature. The topics covered include image compression and resizing; skeletonization, erosion and dilation; convex hull computation, edge detection and segmentation; forgery detection and content based retrieval; and pattern generation. The book advances the theory of image processing, pattern recognition and generation as well as the design of efficient algorithms and hardware for parallel image processing and analysis. It is aimed at computer scientists, software programmers, electronic engineers, mathematicians and physicists, and at everyone who studies or develops cellular automaton algorithms and tools for image processing and analysis, or develops novel architectures and implementations of massive parallel computing devices. The book will provide attractive reading for a general audience because it has do-it-yourself appeal: all the computer experiments presented within it can be implemented with minimal knowledge of programming. The simplicity yet substantial functionality of the cellular automaton approach, and the transparency of the algorithms proposed, makes the text ideal supplementary reading for courses on image processing, parallel computing, automata theory and applications."
Recently, much attention has been paid to image processing with multi-resolution and hierarchical structures such as pyramids and trees. This volume deals with recursive pyramids, which combine the advantages of available multiresolution structures and which are convenient both for global and local image processing. Recursive pyramids are based on regular hierarchical (recursive) structures containing data on image fragments of different sizes. Such an image representation technique enables the effective manipulation of pictorial information as well as the development of special hardware or data structures. The major aspects of this book are two original mathematical models of greyscale and binary images represented by recursive structures. Image compression, transmission and processing are discussed using these models. A number of applications are presented, including optical character recognition, expert systems and special computer architecture for pictorial data processing. The majority of results are presented as algorithms applicable to discrete information fields of arbitrary dimensions (e.g. 2-D or 3-D images). The book is divided into six chapters: Chapter 1 provides a brief introduction. Chapter 2 then deals with recursive structures and their properties. Chapter 3 introduces pyramidal image models. Image coding and the progressive transmission of images with gradual refinement are discussed in Chapter 4. Chapters 5 and 6 are devoted to image processing with pyramidal-recursive structures and applications. The volume concludes with a comprehensive bibliography. This work should interest applied mathematicians and computer scientists whose work involves computer vision, information theory and other aspects of image representation techniques.
Information theory is an exceptional field in many ways. Technically, it is one of the rare fields in which mathematical results and insights have led directly to significant engineering payoffs. Professionally, it is a field that has sustained a remarkable degree of community, collegiality and high standards. James L. Massey, whose work in the field is honored here, embodies the highest standards of the profession in his own career. The book covers the latest work on: block coding, convolutional coding, cryptography, and information theory. The 44 contributions represent a cross-section of the world's leading scholars, scientists and researchers in information theory and communication. The book is rounded off with an index and a bibliography of publications by James Massey.
This textbook aims to provide a clear understanding of the various tools of analysis and design for robust stability and performance of uncertain dynamic systems. In model-based control design and analysis, mathematical models can never completely represent the "real world" system that is being modeled, and thus it is imperative to incorporate and accommodate a level of uncertainty into the models. This book directly addresses these issues from a deterministic uncertainty viewpoint and focuses on the interval parameter characterization of uncertain systems. Various tools of analysis and design are presented in a consolidated manner. This volume fills a current gap in published works by explicitly addressing the subject of control of dynamic systems from linear state space framework, namely using a time-domain, matrix-theory based approach. This book also: Presents and formulates the robustness problem in a linear state space model framework. Illustrates various systems level methodologies with examples and applications drawn from aerospace, electrical and mechanical engineering. Provides connections between lyapunov-based matrix approach and the transfer function based polynomial approaches. Robust Control of Uncertain Dynamic Systems: A Linear State Space Approach is an ideal book for first year graduate students taking a course in robust control in aerospace, mechanical, or electrical engineering.
How real is reality? Are our images of the world mere
inventions, or does an external reality correspond to them? Is it
possible to know the truth?
This volume presents various aspects of non-integer order systems, also known as fractional systems, which have recently attracted an increasing attention in the scientific community of systems science, applied mathematics, control theory. Non-integer systems have become relevant for many fields of science and technology exemplified by the modeling of signal transmission, electric noise, dielectric polarization, heat transfer, electrochemical reactions, thermal processes, acoustics, etc. The content is divided into six parts, every of which considers one of the currently relevant problems. In the first part the Realization problem is discussed, with a special focus on positive systems. The second part considers stability of certain classes of non-integer order systems with and without delays. The third part is focused on such important aspects as controllability, observability and optimization especially in discrete time. The fourth part is focused on distributed systems where non-integer calculus leads to new and interesting results. The next part considers problems of solutions and approximations of non-integer order equations and systems. The final and most extensive part is devoted to applications. Problems from mechatronics, biomedical engineering, robotics and others are all analyzed and solved with tools from fractional systems. This volume came to fruition thanks to high level of talks and interesting discussions at RRNR 2013 - 5th Conference on Non-integer Order Calculus and its Applications that took place at AGH University of Science and Technology in Krakow, Poland, which was organized by the Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering.
Synchronization of chaotic systems, a patently nonlinear
phenomenon, has emerged as a highly active interdisciplinary
research topic at the interface of physics, biology, applied
mathematics and engineering sciences. In this connection,
time-delay systems described by delay differential equations have
developed as particularly Last but not least, the presentation as a whole strives for a
balance between the necessary mathematical description of the
basics
The "Turbulence and Interactions 2009" (TI2009) conference was held in Saint- Luce on the island of La Martinique, France, on May 31-June 5, 2009. The sci- tific sponsors of the conference were * DGA * Ecole Polytechnique Federale de Lausanne (EPFL), * ERCOFTAC : European Research Community on Flow, Turbulence and Combustion, * Institut Jean Le Rond d'Alembert, Paris, * ONERA. This second TI conference was very successful as it attracted 65 researchers from 17 countries. The magnificent venue and the beautiful weather helped the participants to discuss freely and casually, share ideas and projects, and spend very good times all together. The organisers were fortunate in obtaining the presence of the following - vited speakers: L. Fuchs (KTH, Stockholm and Lund University), J. Jimenez (Univ. Politecnica Madrid), C.-H. Moeng (NCAR), A. Scotti (University of North Carolina), L. Shen (Johns Hopkins University) and A.J. Smits (Princeton Univ- sity). The topics covered by the 62 contributed papers ranged from experimental results through theory to computations. They represent a snapshot of the state-- the-art in turbulence research. The papers of the conference went through the usual reviewing process and the result is given in this book of Proceedings. In the present volume, the reader will find the keynote lectures followed by the contributed talks given in alphabetical order of the first author. |
![]() ![]() You may like...
Dualisability - Unary Algebras and…
Jane G. Pitkethly, Brian A. Davey
Hardcover
R3,185
Discovery Miles 31 850
Reinforcement of Timber Elements in…
Jorge Branco, Philipp Dietsch, …
Hardcover
R3,828
Discovery Miles 38 280
Operational Research - IO 2013 - XVI…
Joao Paulo Almeida, Jose Fernando Oliveira, …
Hardcover
Proceedings of SECON'19 - Structural…
Kaustubh Dasgupta, A. S. Sajith, …
Hardcover
R6,108
Discovery Miles 61 080
Behavioral Finance - Psychology…
Richard Deaves, Lucy Ackert
Hardcover
|