![]() |
![]() |
Your cart is empty |
||
Books > Reference & Interdisciplinary > Communication studies > Information theory
This unique reference represents a cross-section of forefront robotics research, ranging from robotics and systems to learning, autonomy and failure detection, from vision and navigation to localization and mapping, which are based on the papers presented at the 1st European Robotics Symposium (EUROS-06) held in Palermo, Italy from 16-18 March, 2006. The European Robotics Symposium (EUROS) is a brand-new International scientific event promoted by EURON, the European Robotics Network.
This book is an updated version of the information theory classic, first published in 1990. About one-third of the book is devoted to Shannon source and channel coding theorems; the remainder addresses sources, channels, and codes and on information and distortion measures and their properties. New in this edition: Expanded treatment of stationary or sliding-block codes and their relations to traditional block codesExpanded discussion of results from ergodic theory relevant to information theoryExpanded treatment of B-processes -- processes formed by stationary coding memoryless sourcesNew material on trading off information and distortion, including the Marton inequalityNew material on the properties of optimal and asymptotically optimal source codesNew material on the relationships of source coding and rate-constrained simulation or modeling of random processes Significant material not covered in other information theory texts includes stationary/sliding-block codes, a geometric view of information theory provided by process distance measures, and general Shannon coding theorems for asymptotic mean stationary sources, which may be neither ergodic nor stationary, and d-bar continuous channels.
This book gathers concepts of information across diverse fields physics, electrical engineering and computational science surveying current theories, discussing underlying notions of symmetry, and showing how the capacity of a system to distinguish itself relates to information. The author develops a formal methodology using group theory, leading to the application of Burnside's Lemma to count distinguishable states. This provides a tool to quantify complexity and information capacity in any physical system.
This work addresses the topic of philosophical complexity, which shares certain assumptions with scientific complexity, cybernetics, and General Systems Theory, but which is also developing as a subject field in its own right. Specifically, the post-structural reading of philosophical complexity that was pioneered by Paul Cilliers is further developed in this study. To this end, the ideas of a number of contemporary French post-structural theorists and their predecessors - including Derrida, Nancy, Bataille, Levinas, Foucault, Saussure, Nietzsche, Heidegger, and Hegel - are introduced. The implications that their various insights hold for our understanding of complex human systems are teased out at the hand of the themes of economy, (social) ontology, subjectivity, epistemology, and ethics. The analyses are also illuminated at the hand of the problematic of the foreigner and the related challenges of showing hospitality to foreigners. The study presents a sophisticated account of both philosophical complexity and philosophies of difference. By relating these subject fields, the study also extends our understanding of philosophical complexity, and offers an original characterisation of the aforementioned philosophers as complex thinkers.
Model reduction and coarse-graining are important in many areas of science and engineering. How does a system with many degrees of freedom become one with fewer? How can a reversible micro-description be adapted to the dissipative macroscopic model? These crucial questions, as well as many other related problems, are discussed in this book. All contributions are by experts whose specialities span a wide range of fields within science and engineering.
This book presents a systematic study on the inherent complexity in fuzzy systems, resulting from the large number and the poor transparency of the fuzzy rules. The study uses a novel approach for complexity management, aimed at compressing the fuzzy rule base by removing the redundancy while preserving the solution. The compression is based on formal methods for presentation, manipulation, transformation and simplification of fuzzy rule bases.
This monograph has arisen from the multidisciplinary research extending over biology, robotics and hybrid systems theory. It is inspired by modeling reactive behavior of the immune system cell population, where each cell is considered an independent agent. The authors formulate the optimal control of maximizing the probability of robotic presence in a given region and discuss the application of the Minimum Principle for partial differential equations to this problem.
Supervision, condition-monitoring, fault detection, fault diagnosis and fault management play an increasing role for technical processes and vehicles in order to improve reliability, availability, maintenance and lifetime. For safety-related processes fault-tolerant systems with redundancy are required in order to reach comprehensive system integrity. This book is a sequel of the book Fault-Diagnosis Systems published in 2006, where the basic methods were described. After a short introduction into fault-detection and fault-diagnosis methods the book shows how these methods can be applied for a selection of 20 real technical components and processes as examples, such as: Electrical drives (DC, AC) Electrical actuators Fluidic actuators (hydraulic, pneumatic) Centrifugal and reciprocating pumps Pipelines (leak detection) Industrial robots Machine tools (main and feed drive, drilling, milling, grinding) Heat exchangers Also realized fault-tolerant systems for electrical drives, actuators and sensors are presented. The book describes why and how the various signal-model-based and process-model-based methods were applied and which experimental results could be achieved. In several cases a combination of different methods was most successful. The book is dedicated to graduate students of electrical, mechanical, chemical engineering and computer science and for engineers.
Over the last thirty years an abundance of papers have been writ ten on adaptive dynamic control systems. Nevertheless, now it may be predicted with confidence that the adaptive mechanics, a new division, new line of inquiry in one of the violently developing fields of cybernetic mechanics, is emerging. The birth process falls far short of being com pleted. There appear new problems and methods of their solution in the framework of adaptive nonlinear dynamics. Therefore, the present work cannot be treated as a certain polished, brought-to-perfection school textbook. More likely, this is an attempt to show a number of well known scientific results in the parametric synthesis of nonlinear systems (this, strictly speaking, accounts for the availability of many reviews), as well as to bring to notice author's developments on this question undoubtedly modern and topical. The nonlinear, and practically La grangian, systems cover a wide class of classical objects in theoretical mechanics, and primarily solid-body (robotic, gyroscopic, rocket-cosmic, and other) systems. And what is rather important, they have a direct trend to practical application. To indicate this discussion, I should like to notice that it does not touch upon the questions concerned with the linear and stochastic con trolobjects. Investigated are only nonlinear deterministic systems being in the conditions when some system parameters are either unknown or beyond the reach of measurement, or they execute an unknown limited and fairly smooth drift in time."
The book addresses the control issues such as stability analysis, control synthesis and filter design of Markov jump systems with the above three types of TPs, and thus is mainly divided into three parts. Part I studies the Markov jump systems with partially unknown TPs. Different methodologies with different conservatism for the basic stability and stabilization problems are developed and compared. Then the problems of state estimation, the control of systems with time-varying delays, the case involved with both partially unknown TPs and uncertain TPs in a composite way are also tackled. Part II deals with the Markov jump systems with piecewise homogeneous TPs. Methodologies that can effectively handle control problems in the scenario are developed, including the one coping with the asynchronous switching phenomenon between the currently activated system mode and the controller/filter to be designed. Part III focuses on the Markov jump systems with memory TPs. The concept of -mean square stability is proposed such that the stability problem can be solved via a finite number of conditions. The systems involved with nonlinear dynamics (described via the Takagi-Sugeno fuzzy model) are also investigated. Numerical and practical examples are given to verify the effectiveness of the obtained theoretical results. Finally, some perspectives and future works are presented to conclude the book.
A review of the dissemination of spatial data. Topics addressed include: spatial information infrastructure and innovation; designing information policy research; and evaluating information use, access and dissemination. The work also contains comparative case studies of information dissemination.
This book presents a treatise on the theory and modeling of second-order stationary processes, including an exposition on selected application areas that are important in the engineering and applied sciences. The foundational issues regarding stationary processes dealt with in the beginning of the book have a long history, starting in the 1940s with the work of Kolmogorov, Wiener, Cramer and his students, in particular Wold, and have since been refined and complemented by many others. Problems concerning the filtering and modeling of stationary random signals and systems have also been addressed and studied, fostered by the advent of modern digital computers, since the fundamental work of R.E. Kalman in the early 1960s. The book offers a unified and logically consistent view of the subject based on simple ideas from Hilbert space geometry and coordinate-free thinking. In this framework, the concepts of stochastic state space and state space modeling, based on the notion of the conditional independence of past and future flows of the relevant signals, are revealed to be fundamentally unifying ideas. The book, based on over 30 years of original research, represents a valuable contribution that will inform the fields of stochastic modeling, estimation, system identification, and time series analysis for decades to come. It also provides the mathematical tools needed to grasp and analyze the structures of algorithms in stochastic systems theory.
This volume provides an introduction to and overview of the emerging field of interconnected networks which include multilayer or multiplex networks, as well as networks of networks. Such networks present structural and dynamical features quite different from those observed in isolated networks. The presence of links between different networks or layers of a network typically alters the way such interconnected networks behave - understanding the role of interconnecting links is therefore a crucial step towards a more accurate description of real-world systems. While examples of such dissimilar properties are becoming more abundant - for example regarding diffusion, robustness and competition - the root of such differences remains to be elucidated. Each chapter in this topical collection is self-contained and can be read on its own, thus making it also suitable as reference for experienced researchers wishing to focus on a particular topic.
This monograph is devoted to construction of novel theoretical approaches of m- eling non-homogeneous structural members as well as to development of new and economically ef?cient (simultaneously keeping the required high engineering ac- racy)computationalalgorithmsofnonlineardynamics(statics)ofstronglynonlinear behavior of either purely continuous mechanical objects (beams, plates, shells) or hybrid continuous/lumped interacting mechanical systems. In general, the results presented in this monograph cannot be found in the - isting literature even with the published papers of the authors and their coauthors. We take a challenging and originally developed approach based on the integrated mathematical-numerical treatment of various continuous and lumped/continuous mechanical structural members, putting emphasis on mathematical and physical modeling as well as on the carefully prepared and applied novel numerical - gorithms used to solve the derived nonlinear partial differential equations (PDEs) mainly via Bubnov-Galerkin type approaches. The presented material draws on the ?elds of bifurcation, chaos, control, and s- bility of the objects governed by strongly nonlinear PDEs and ordinary differential equations (ODEs),and may have a positive impact on interdisciplinary ? elds of n- linear mechanics, physics, and applied mathematics. We show, for the ?rst time in a book, the complexity and fascinating nonlinear behavior of continual mechanical objects, which cannot be found in widely reported bifurcational and chaotic dyn- ics of lumped mechanical systems, i. e. , those governed by nonlinear ODEs.
This book explains why complex systems research is important in understanding the structure, function and dynamics of complex natural and social phenomena. It illuminates how complex collective behavior emerges from the parts of a system, due to the interaction between the system and its environment. Readers will learn the basic concepts and methods of complex system research. The book is not highly technical mathematically, but teaches and uses the basic mathematical notions of dynamical system theory, making the book useful for students of science majors and graduate courses.
This textbook provides a comprehensive and instructive coverage of vehicular traffic flow dynamics and modeling. It makes this fascinating interdisciplinary topic, which to date was only documented in parts by specialized monographs, accessible to a broad readership. Numerous figures and problems with solutions help the reader to quickly understand and practice the presented concepts. This book is targeted at students of physics and traffic engineering and, more generally, also at students and professionals in computer science, mathematics, and interdisciplinary topics. It also offers material for project work in programming and simulation at college and university level. The main part, after presenting different categories of traffic data, is devoted to a mathematical description of the dynamics of traffic flow, covering macroscopic models which describe traffic in terms of density, as well as microscopic many-particle models in which each particle corresponds to a vehicle and its driver. Focus chapters on traffic instabilities and model calibration/validation present these topics in a novel and systematic way. Finally, the theoretical framework is shown at work in selected applications such as traffic-state and travel-time estimation, intelligent transportation systems, traffic operations management, and a detailed physics-based model for fuel consumption and emissions.
In the mid-nineteenth century, American and British governments marched with great fanfare into the marketplace of knowledge and publishing. British royal commissions of inquiry, inspectorates, and parliamentary committees conducted famous social inquiries into child labor, poverty, housing, and factories. The American federal government studied Indian tribes, explored the West, and investigated the condition of the South during and after the Civil War. Performing, printing, and then circulating these studies, government established an economy of exchange with its diverse constituencies. In this medium, which Frankel terms "print statism," not only tangible objects such as reports and books but knowledge itself changed hands. As participants, citizens assumed the standing of informants and readers. Even as policy investigations and official reportage became a distinctive feature of the modern governing process, buttressing the claim of the state to represent its populace, government discovered an unintended consequence: it could exercise only limited control over the process of inquiry, the behavior of its emissaries as investigators or authors, and the fate of official reports once issued and widely circulated. This study contributes to current debates over knowledge, print culture, and the growth of the state as well as the nature and history of the "public sphere." It interweaves innovative, theoretical discussions into meticulous, historical analysis.
Here, the authors present modern methods of analysis for nonlinear systems which may occur in fields such as physics, chemistry, biology, or economics. They concentrate on the following topics, specific for such systems: (a) constructive existence results and regularity theorems for all weak solutions; (b) convergence results for solutions and their approximations; (c) uniform global behavior of solutions in time; and (d) pointwise behavior of solutions for autonomous problems with possible gaps by the phase variables. The general methodology for the investigation of dissipative dynamical systems with several applications including nonlinear parabolic equations of divergent form, nonlinear stochastic equations of parabolic type, unilateral problems, nonlinear PDEs on Riemannian manifolds with or without boundary, contact problems as well as particular examples is established. As such, the book is addressed to a wide circle of mathematical, mechanical and engineering readers.
The theory of linear functional observers, which is the subject of this book, is increasingly becoming a popular researched topic because of the many advantages it presents in state observation and control system design. This book presents recent information on the current state of the art research in this field. This book will serve as a useful reference to researchers in this area of research to understand the fundamental concepts relevant to the theory of functional observers and to gather most recent advancements in the field. This book is useful to academics and postgraduate students researching into the theory of linear functional observers. This book can also be useful for specialized final year undergraduate courses in control systems engineering and applied mathematics with a research focus.
In this book for the first time two scientific fields - consensus
formation and synchronization of communications - are presented
together and examined through their interrelational aspects, of
rapidly growing importance. Both fields have indeed attracted
enormous research interest especially in relation to complex
networks.
Available for the first time in English, this two-volume course on theoretical and applied mechanics has been honed over decades by leading scientists and teachers, and is a primary teaching resource for engineering and maths students at St. Petersburg University. The course addresses classical branches of theoretical mechanics (Vol. 1), along with a wide range of advanced topics, special problems and applications (Vol. 2). Among the special applications addressed in this second volume are: stability of motion, nonlinear oscillations, dynamics and statics of the Stewart platform, mechanics under random forces, elements of control theory, relations between nonholonomic mechanics and the control theory, vibration and autobalancing of rotor systems, physical theory of impact, statics and dynamics of a thin rod. This textbook is aimed at students in mathematics and mechanics and at post-graduates and researchers in analytical mechanics.
"AutomaticControl of Atmospheric and Space Flight Vehicles" is perhaps the firstbook on the market to present a unified and straightforwardstudyof the design and analysis of automatic control systems for both atmospheric and space flight vehicles.Covering basic control theory and design concepts, it is meantas a textbook for senior undergraduate and graduate students in moderncourses on flight control systems. In addition to the basics of flight control, this book covers a number ofupper-level topicsand will therefore be of interest not only to advanced students, but also toresearchers and practitioners in aeronautical engineering, applied mathematics, and systems/control theory."
Mastering the complexity of innovative systems is a challenging aspect of design and product development. Only a systematic approach can help to embed an increasing degree of smartness in devices and machines, allowing them to adapt to variable conditions or harsh environments. At the same time, customer needs have to be identified before they can be translated into consistent technical requirements. The field of Systems Engineering provides a method, a process, suitable tools and languages to cope with the complexity of various systems such as motor vehicles, robots, railways systems, aircraft and spacecraft, smart manufacturing systems, microsystems, and bio-inspired devices. It makes it possible to trace the entire product lifecycle, by ensuring that requirements are matched to system functions, and functions are matched to components and subsystems, down to the level of assembled parts. This book discusses how Systems Engineering can be suitably deployed and how its benefits are currently being exploited by Product Lifecycle Management. It investigates the fundamentals of Model Based Systems Engineering (MBSE) through a general introduction to this topic and provides two examples of real systems, helping readers understand how these tools are used. The first, which involves the mechatronics of industrial systems, serves to reinforce the main content of the book, while the second describes an industrial implementation of the MBSE tools in the context of developing the on-board systems of a commercial aircraft.
This book collects the works presented at the 8th International Conference on Complex Networks (CompleNet) 2017 in Dubrovnik, Croatia, on March 21-24, 2017. CompleNet aims at bringing together researchers and practitioners working in areas related to complex networks. The past two decades has witnessed an exponential increase in the number of publications within this field. From biological systems to computer science, from economic to social systems, complex networks are becoming pervasive in many fields of science. It is this interdisciplinary nature of complex networks that CompleNet aims at addressing. The last decades have seen the emergence of complex networks as the language with which a wide range of complex phenomena in fields as diverse as physics, computer science, and medicine (to name a few) can be properly described and understood. This book provides a view of the state-of-the-art in this dynamic field and covers topics such as network controllability, social structure, online behavior, recommendation systems, and network structure. |
![]() ![]() You may like...
Research Anthology on Architectures…
Information R Management Association
Hardcover
R13,695
Discovery Miles 136 950
Subsurface Environmental Modelling…
Dirk Scheer, Holger Class, …
Hardcover
R2,887
Discovery Miles 28 870
Emerging Technologies in Data Mining and…
Joao Manuel R.S. Tavares, Satyajit Chakrabarti, …
Hardcover
R5,821
Discovery Miles 58 210
Computational Intelligence in Data…
Aravindan Chandrabose, Ulrich Furbach, …
Hardcover
R2,918
Discovery Miles 29 180
Multimedia Data Mining and Analytics…
Aaron K Baughman, Jiang Gao, …
Hardcover
|