![]() |
![]() |
Your cart is empty |
||
Books > Reference & Interdisciplinary > Communication studies > Information theory
This book covers the topics on cyber security in IoT systems used in different verticals such as agriculture, health, homes, transportation within the context of smart cities. The authors provide an analysis of the importance of developing smart cities by incorporating technologies such as IoT to achieve the sustainable development goals (SDGs) within the agenda 2030. Furthermore, it includes an analysis of the cyber security challenges generated by IoT systems due to factors such as heterogeneity, lack of security in design and few hardware resources in these systems, and how they should be addressed from a risk analysis approach, evaluating the risk analysis methodologies widely used in traditional IT systems.
This book on road traffic congestion in cities and suburbs describes congestion problems and shows how they can be relieved. The first part (Chapters 1 - 3) shows how congestion reflects transportation technologies and settlement patterns. The second part (Chapters 4 - 13) describes the causes, characteristics, and consequences of congestion. The third part (Chapters 14 - 23) presents various relief strategies - including supply adaptation and demand mitigation - for nonrecurring and recurring congestion. The last part (Chapter 24) gives general guidelines for congestion relief and provides a general outlook for the future. The book will be useful for a wide audience - including students, practitioners and researchers in a variety of professional endeavors: traffic engineers, transportation planners, public transport specialists, city planners, public administrators, and private enterprises that depend on transportation for their activities.
This volume, which is dedicated to Heinz Langer, includes biographical material and carefully selected papers. Heinz Langer has made fundamental contributions to operator theory. In particular, he has studied the domains of operator pencils and nonlinear eigenvalue problems, the theory of indefinite inner product spaces, operator theory in Pontryagin and Krein spaces, and applications to mathematical physics. His works include studies on and applications of Schur analysis in the indefinite setting, where the factorization theorems put forward by Krein and Langer for generalized Schur functions, and by Dijksma-Langer-Luger-Shondin, play a key role. The contributions in this volume reflect Heinz Langer's chief research interests and will appeal to a broad readership whose work involves operator theory.
Holistic Engineering Education: Beyond Technology is a compilation of coordinated and focused essays from world leaders in the engineering profession who are dedicated to a transformation of engineering education and practice. The contributors define a new and holistic approach to education and practice that captures the creativity, interdisciplinarity, complexity, and adaptability required for the profession to grow and truly serve global needs. With few exceptions today, engineering students and professionals continue to receive a traditional, technically-based education and training using curriculum models developed for early 20th century manufacturing and machining. While this educational paradigm has served engineering well, helping engineers create awe-inspiring machines and technologies for society, the coursework and expectations of most engineering programs eschew breadth and intellectual exploration to focus on consistent technological precision and study. Why this dichotomy? While engineering will always need precise technological skill, the 21st century innovation economy demands a new professional perspective that recognizes the value of complex systems thinking, cross-disciplinary collaborations, economic and environmental impacts (sustainability), and effective communication to global and community leaders, thus enabling engineers to consider "the whole patient" of society's needs. The goal of this book is to inspire, lead, and guide this critically needed transformation of engineering education. "Holistic Engineering Education: Beyond Technology points the way to a transformation of engineering education and practice that will be sufficiently robust, flexible, and systems-oriented to meet the grand challenges of the 21st century with their ever-increasing scale, complexity, and transdisciplinary nature." -- Charles Vest, President, National Academy of Engineering;
President Emeritus, MIT -- Linda Katehi, Chancellor, University of California at Davis "This superb volume offers a provocative portrait of the exciting future of engineering education A dramatically new form of engineering education is needed that recognizes this field as a liberal art, as a profession that combines equal parts technical rigor and creative design The authors challenge the next generation to engineering educators to imagine, think and act in new ways. " -- Lee S. Shulman, President Emeritus, The Carnegie Foundation for the Advancement of Teaching and Charles E. Ducommun Professor of Education Emeritus, Stanford University"
This book introduces a unique, packet-based co-design control framework for networked control systems. It begins by providing a comprehensive survey of state-of-the-art research on networked control systems, giving readers a general overview of the field. It then verifies the proposed control framework both theoretically and experimentally - the former using multiple control methodologies, and the latter using a unique online test rig for networked control systems. The framework investigates in detail the most common, communication constraints, including network-induced delays, data packet dropout, data packet disorders, and network access constraints, as well as multiple controller design and system analysis tools such as model predictive control, linear matrix inequalities and optimal control. This unique and complete co-design framework greatly benefits researchers, graduate students and engineers in the fields of control theory and engineering.
In this monograph, we combine operator techniques with state space methods to solve factorization, spectral estimation, and interpolation problems arising in control and signal processing. We present both the theory and algorithms with some Matlab code to solve these problems. A classical approach to spectral factorization problems in control theory is based on Riccati equations arising in linear quadratic control theory and Kalman ?ltering. One advantage of this approach is that it readily leads to algorithms in the non-degenerate case. On the other hand, this approach does not easily generalize to the nonrational case, and it is not always transparent where the Riccati equations are coming from. Operator theory has developed some elegant methods to prove the existence of a solution to some of these factorization and spectral estimation problems in a very general setting. However, these techniques are in general not used to develop computational algorithms. In this monograph, we will use operator theory with state space methods to derive computational methods to solve factorization, sp- tral estimation, and interpolation problems. It is emphasized that our approach is geometric and the algorithms are obtained as a special application of the theory. We will present two methods for spectral factorization. One method derives al- rithms based on ?nite sections of a certain Toeplitz matrix. The other approach uses operator theory to develop the Riccati factorization method. Finally, we use isometric extension techniques to solve some interpolation problems.
This book centres on a broadened view of complexity that will enrich engagement with complexity in the social sciences. The key idea is to employ complexity theory to develop a holistic account of practice, agency and expertise. In doing so, the book acknowledges and builds upon the relational character of reductive accounts. It draws upon recent theoretical work on complexity, emergence and relationality to develop a novel account of practice, agency and expertise in and for workplaces. Biological, psychological and social aspects of these are integrated. This novel account overcomes problems in current views of practice, agency and expertise, which suffer from reductive, or fragmented, analyses, based upon individuals, groups, or networks. In retrieving the experiential richness of human activity - often esteemed as the basis of generative and creative life - this book shows how complexity both emerges from, and is, a non-reductive feature of, human experience, especially in daily work. "...an ambitiously wide-ranging volume, questioning the key tenets of respected approaches ..... and offering ..... 'novel accounts', which draw on features of complexity thinking.... ...But they go further than any of us in their argument that: 'whatever reductive moves are made, they 'flow' from holistic accounts of relationality which have already affectively engaged the purposes of a co-present group.' This is the intellectual contribution that is built consistently and persuasively across the chapters." Professor Emerita Anne Edwards, Oxford University "Hager and Beckett have written a book that will challenge more commonly held notions of agency, practice, skills, and learning. Centering their argument on complexity theory or, as they prefer, complexity thinking, Hager and Beckett argue that it is through relations that we raise questions about, gather data from, and make working sense of the complexity that surrounds us. Groups then, particularly small groups, hold and implement agentive power. And what the authors call co-present groups-ones in which holistic relationality occurs socially, and affectively in distinctive places-"draw us closer to each other, and harness our normativity by enabling negotiability and reason-giving." If your field of study involves anything remotely sociocultural in nature or if you are just interested in the complex ways we engage as humans with our worlds, you should find a place for this book in your library." Bob Fecho, Teachers College, Columbia University, New York NY, USA
Organizations of all kinds struggle to understand, adapt, respond and manipulate changing conditions in their internal and external environments. Approaches based on the causal, linear logic of mechanistic sciences and engineering continue to play an important role, given people's ability to create order. But such approaches are valid only within carefully circumscribed boundaries. They become counterproductive when the same organizations display the highly reflexive, context-dependent, dynamic nature of systems in which agents learn and adapt and new patterns emerge. The rapidly expanding discussion about complex systems offers important contributions to the integration of diverse perspectives and ultimately new insights into organizational effectiveness. There is increasing interest in complexity in mainstream business education, as well as in specialist business disciplines such as knowledge management. Real world systems can't be completely designed, controlled, understood or predicted, even by the so-called sciences of complexity, but they can be more effective when understood as complex systems. While many scientific disciplines explore complexity principally through abstract mathematical models and simulations, Emergence: Complexity & Organization explores the emerging understanding of human systems from both the 'hard' quantitative sciences and the 'soft' qualitative perspectives. This 2008 Annual includes articles from Stephen J. Guastello, Ken Baskin, Mihnea Moldoveanu, Frank Boons, Duncan A. Robertson, Brenda L. Massetti, Maria May Seitanidi, Mary Lee Rhodes and many more, which explore a range of complexity-related topics from philosophical concerns through to the practical application of complexity ideas, concepts and frameworks in human organizations. Also included are a series of four reproductions of classical papers in the fields of complexity and systems, each with critical introductions that explore their modern relevance: "The Meanings of 'Emergence' and Its Modes" by Arthur O. Lovejoy (originally published in 1927) "An Outline of General System Theory" by Ludwig von Bertalanffy (originally published in 1950) "Society as a Complex Adaptive System" by Walter Buckley (originally published in 1968) "Is Adaptability Enough?" by Geoffrey Vickers (originally published in 1959)
Our understanding of information and information dynamics has outgrown classical information theory. The theory does not account for the value or influence of information within the context of a system or network and does not explain how these properties might influence how information flows though and interacts with a system. The invited chapters in this collection present new theories, methods, and applications that address some of these limitations. Dynamics of Information Systems presents state-of-the-art research explaining the importance of information in the evolution of a distributed or networked system. This book presents techniques for measuring the value or significance of information within the context of a system. Each chapter reveals a unique topic or perspective from experts in this exciting area of research. These newly developed techniques have numerous applications including: the detection of terrorist networks, the design of highly functioning businesses and computer systems, modeling the distributed sensory and control physiology of animals, quantum entanglement and genome modeling, multi-robotic systems design, as well as industrial and manufacturing safety.
By the dawn of the new millennium, robotics has undergone a major transformation in scope and dimensions. This expansion has been brought about by the maturity of the field and the advances in its related technologies. From a largely dominant industrial focus, robotics has been rapidly expanding into the challenges of the human world. The new generation of robots is expected to safely and dependably co-habitat with humans in homes, workplaces, and communities, providing support in services, entertainment, education, healthcare, manufacturing, and assistance. Beyond its impact on physical robots, the body of knowledge robotics has produced is revealing a much wider range of applications reaching across diverse research areas and scientific disciplines, such as: biomechanics, haptics, neurosciences, virtual simulation, animation, surgery, and sensor networks among others. In return, the challenges of the new emerging areas are proving an abundant source of stimulation and insights for the field of robotics. It is indeed at the intersection of disciplines that the most striking advances happen. The goal of the series of Springer Tracts in Advanced Robotics (STAR) is to bring, in a timely fashion, the latest advances and developments in robotics on the basis of their significance and quality. It is our hope that the wider dissemination of research developments will stimulate more exchanges and collaborations among the research community and contribute to further advancement of this rapidly growing field.
This book, along with its companion volume, Nonlinear Dynamics New Directions: Theoretical Aspects, covers topics ranging from fractal analysis to very specific applications of the theory of dynamical systems to biology. This second volume contains mostly new applications of the theory of dynamical systems to both engineering and biology. The first volume is devoted to fundamental aspects and includes a number of important new contributions as well as some review articles that emphasize new development prospects. The topics addressed in the two volumes include a rigorous treatment of fluctuations in dynamical systems, topics in fractal analysis, studies of the transient dynamics in biological networks, synchronization in lasers, and control of chaotic systems, among others. This book also: * Develops applications of nonlinear dynamics on a diversity of topics such as patterns of synchrony in neuronal networks, laser synchronization, control of chaotic systems, and the study of transient dynamics in biological * Includes a study of self-organized regularity in long-range systems * Explains use of Levenstein's distance for measuring lexical evolution rates
This book focuses on computational and fractional analysis, two areas that are very important in their own right, and which are used in a broad variety of real-world applications. We start with the important Iyengar type inequalities and we continue with Choquet integral analytical inequalities, which are involved in major applications in economics. In turn, we address the local fractional derivatives of Riemann-Liouville type and related results including inequalities. We examine the case of low order Riemann-Liouville fractional derivatives and inequalities without initial conditions, together with related approximations. In the next section, we discuss quantitative complex approximation theory by operators and various important complex fractional inequalities. We also cover the conformable fractional approximation of Csiszar's well-known f-divergence, and present conformable fractional self-adjoint operator inequalities. We continue by investigating new local fractional M-derivatives that share all the basic properties of ordinary derivatives. In closing, we discuss the new complex multivariate Taylor formula with integral remainder. Sharing results that can be applied in various areas of pure and applied mathematics, the book offers a valuable resource for researchers and graduate students, and can be used to support seminars in related fields.
Stochastic Optimal Control (SOC)-a mathematical theory concerned with minimizing a cost (or maximizing a payout) pertaining to a controlled dynamic processunder uncertainty-has proven incredibly helpful to understanding and predicting debt crises and evaluating proposed financial regulation and risk management."Stochastic Optimal Control and the U.S. Financial Debt Crisis"analyzes SOC in relation to the 2008 U.S. financial crisis, and offers a detailed framework depicting why such a methodology is best suited for reducing financial risk and addressing key regulatory issues. Topics discussed include the inadequacies of the current approaches underlying financial regulations, the use of SOC to explain debt crises and superiority over existing approaches to regulation, and the domestic and international applications of SOC to financial crises. Principles in this book will appeal to economists, mathematicians, and researchers interested in the U.S. financial debt crisis and optimal risk management."
This book presents an internationally comprehensive perspective into the field of complex systems. It explores the challenges of and approaches to complexity from a broad range of disciplines, including big data, health care, medicine, mathematics, mechanical and systems engineering, air traffic control and finance. The book's interdisciplinary character allows readers to identify transferable and mutually exclusive lessons learned among these disciplines and beyond. As such, it is well suited to the transfer of applications and methodologies between ostensibly incompatible disciplines. This book provides fresh perspectives on comparable issues of complexity from the top minds on systems thinking.
This book contains selected papers of NSC08, the 2nd Conference on Nonlinear Science and Complexity, held 28-31 July, 2008, Porto, Portugal. It focuses on fundamental theories and principles, analytical and symbolic approaches, computational techniques in nonlinear physics and mathematics. Topics treated include - Chaotic Dynamics and Transport in Classic and Quantum Systems - Complexity and Nonlinearity in Molecular Dynamics and Nano-Science - Complexity and Fractals in Nonlinear Biological Physics and Social Systems - Lie Group Analysis and Applications in Nonlinear Science - Nonlinear Hydrodynamics and Turbulence - Bifurcation and Stability in Nonlinear Dynamic Systems - Nonlinear Oscillations and Control with Applications - Celestial Physics and Deep Space Exploration - Nonlinear Mechanics and Nonlinear Structural Dynamics - Non-smooth Systems and Hybrid Systems - Fractional dynamical systems
This edited volume highlights the scientific contributions of Volker Mehrmann, a leading expert in the area of numerical (linear) algebra, matrix theory, differential-algebraic equations and control theory. These mathematical research areas are strongly related and often occur in the same real-world applications. The main areas where such applications emerge are computational engineering and sciences, but increasingly also social sciences and economics. This book also reflects some of Volker Mehrmann's major career stages. Starting out working in the areas of numerical linear algebra (his first full professorship at TU Chemnitz was in "Numerical Algebra," hence the title of the book) and matrix theory, Volker Mehrmann has made significant contributions to these areas ever since. The highlights of these are discussed in Parts I and II of the present book. Often the development of new algorithms in numerical linear algebra is motivated by problems in system and control theory. These and his later major work on differential-algebraic equations, to which he together with Peter Kunkel made many groundbreaking contributions, are the topic of the chapters in Part III. Besides providing a scientific discussion of Volker Mehrmann's work and its impact on the development of several areas of applied mathematics, the individual chapters stand on their own as reference works for selected topics in the fields of numerical (linear) algebra, matrix theory, differential-algebraic equations and control theory.
This book presents up-to-date research and novel methodologies on fault diagnosis and fault tolerant control for switched linear systems. It provides a unified yet neat framework of filtering, fault detection, fault diagnosis and fault tolerant control of switched systems. It can therefore serve as a useful textbook for senior and/or graduate students who are interested in knowing the state-of-the-art of filtering, fault detection, fault diagnosis and fault tolerant control areas, as well as recent advances in switched linear systems.
Bringing together over fifty contributions on all aspects of nonlinear and complex dynamics, this impressive topical collection is both a scientific and personal tribute, on the occasion of his 70th birthday, by many outstanding colleagues in the broad fields of research pursued by Prof. Manuel G Velarde. The topics selected reflect the research areas covered by the famous Instituto Pluridisciplinar at the Universidad Complutense of Madrid, which he co-founded over two decades ago, and include: fluid physics and related nonlinear phenomena at interfaces and in other geometries, wetting and spreading dynamics, geophysical and astrophysical flows, and novel aspects of electronic transport in anharmonic lattices, as well as topics in neurodynamics and robotics.
This volume contains the proceedings of the XII Symposium of Probability and Stochastic Processes which took place at Universidad Autonoma de Yucatan in Merida, Mexico, on November 16-20, 2015. This meeting was the twelfth meeting in a series of ongoing biannual meetings aimed at showcasing the research of Mexican probabilists as well as promote new collaborations between the participants. The book features articles drawn from different research areas in probability and stochastic processes, such as: risk theory, limit theorems, stochastic partial differential equations, random trees, stochastic differential games, stochastic control, and coalescence. Two of the main manuscripts survey recent developments on stochastic control and scaling limits of Markov-branching trees, written by Kazutoshi Yamasaki and Benedicte Haas, respectively. The research-oriented manuscripts provide new advances in active research fields in Mexico. The wide selection of topics makes the book accessible to advanced graduate students and researchers in probability and stochastic processes.
In this book Eric Kramer introduces his theory of dimensional accrual/dissociation to explain the difference between modernity and postmodernity. He also argues that social scientific operational definitions are useful but very often arbitrary. Thus, realities based on them are available for creative (alternative) validities. Kramer then concentrates on the concepts of modernity and postmodernity to analyze how they have been defined and structured and, in the end, he offers clear definitions of these concepts and a better understanding of the work of those who have shaped these ideas. Kramer applies this position to the concepts of modernity and postmodernity, providing a painstaking review of the origins, key thinkers, and current status of these ideas. By reviewing the development of these ideas and providing clear definitions of these concepts, Kramer helps scholars and researchers in the social sciences and humanities better understand applications and limitations of these key approaches in late twentieth-century scholarship.
Understanding the latest capabilities in the cyber threat landscape as well as the cyber forensic challenges and approaches is the best way users and organizations can prepare for potential negative events. Adopting an experiential learning approach, this book describes how cyber forensics researchers, educators and practitioners can keep pace with technological advances, and acquire the essential knowledge and skills, ranging from IoT forensics, malware analysis, and CCTV and cloud forensics to network forensics and financial investigations. Given the growing importance of incident response and cyber forensics in our digitalized society, this book will be of interest and relevance to researchers, educators and practitioners in the field, as well as students wanting to learn about cyber forensics.
This book reports on an outstanding research devoted to modeling and control of dynamic systems using fractional-order calculus. It describes the development of model-based control design methods for systems described by fractional dynamic models. More than 300 years had passed since Newton and Leibniz developed a set of mathematical tools we now know as calculus. Ever since then the idea of non-integer derivatives and integrals, universally referred to as fractional calculus, has been of interest to many researchers. However, due to various issues, the usage of fractional-order models in real-life applications was limited. Advances in modern computer science made it possible to apply efficient numerical methods to the computation of fractional derivatives and integrals. This book describes novel methods developed by the author for fractional modeling and control, together with their successful application in real-world process control scenarios.
This monograph investigates the stability and performance of control systems subject to actuator saturation. It presents new results obtained by both improving the treatment of the saturation function and constructing new Lyapunov functions. In particular, two improved treatments of the saturation function are described that exploit the intricate structural properties of its traditional convex hull representation. The authors apply these treatments to the estimation of the domain of attraction and the finite-gain L2 performance by using the quadratic Lyapunov function and the composite quadratic Lyapunov function. Additionally, an algebraic computation method is given for the exact determination of the maximal contractively invariant ellipsoid, a level set of a quadratic Lyapunov function. The authors conclude with a look at some of the problems that can be solved by the methods developed and described throughout the book. Numerous step-by-step descriptions, examples, and simulations are provided to illustrate the effectiveness of their results. Stability and Performance of Control Systems with Actuator Saturation will be an invaluable reference for graduate students, researchers, and practitioners in control engineering and applied mathematics.
This book constitutes the refereed post-conference proceedings of the 4th International Conference on Intelligence Science, ICIS 2020, held in Durgapur, India, in February 2021 (originally November 2020). The 23 full papers and 4 short papers presented were carefully reviewed and selected from 42 submissions. One extended abstract is also included. They deal with key issues in brain cognition; uncertain theory; machine learning; data intelligence; language cognition; vision cognition; perceptual intelligence; intelligent robot; and medical artificial intelligence. |
![]() ![]() You may like...
Learning and Teaching Number Theory…
Stephen R. Campbell, Rina Zazkis
Hardcover
R2,779
Discovery Miles 27 790
Sequences, Groups, and Number Theory
Valerie Berthe, Michel Rigo
Hardcover
R5,205
Discovery Miles 52 050
Advances in Non-Archimedean Analysis and…
W. A. Zuniga-Galindo, Bourama Toni
Hardcover
R3,407
Discovery Miles 34 070
Cohomology of Number Fields
Jurgen Neukirch, Alexander Schmidt, …
Hardcover
R5,680
Discovery Miles 56 800
Analytic Number Theory - In Honor of…
Carl Pomerance, Michael Th Rassias
Hardcover
Automorphic Representations and…
Dorian Goldfeld, Joseph Hundley
Hardcover
R2,903
Discovery Miles 29 030
|