![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Reference & Interdisciplinary > Communication studies > Information theory
This is a supplementary volume to the major three-volume Handbook of Combinatorial Optimization set. It can also be regarded as a stand-alone volume presenting chapters dealing with various aspects of the subject in a self-contained way.
In the study of the computational structure of biological/robotic sensorimotor systems, distributed models have gained center stage in recent years, with a range of issues including self-organization, non-linear dynamics, field computing etc. This multidisciplinary research area is addressed here by a multidisciplinary team of contributors, who provide a balanced set of articulated presentations which include reviews, computational models, simulation studies, psychophysical, and neurophysiological experiments. The book is divided into three parts, each characterized by a slightly different focus: in part I, the major theme concerns computational maps which typically model cortical areas, according to a view of the sensorimotor cortex as "geometric engine" and the site of "internal models" of external spaces. Part II also addresses problems of self-organization and field computing, but in a simpler computational architecture which, although lacking a specialized cortical machinery, can still behave in a very adaptive and surprising way by exploiting the interaction with the real world. Finally part III is focused on the motor control issues related to the physical properties of muscular actuators and the dynamic interactions with the world. The reader will find different approaches on controversial issues, such as the role and nature of force fields, the need for internal representations, the nature of invariant commands, the vexing question about coordinate transformations, the distinction between hierachiacal and bi-directional modelling, and the influence of muscle stiffness.
This book contains all refereed papers that were accepted to the fifth edition of the " Complex Systems Design & Management " (CSD&M 2014) international conference which took place in Paris (France) on the November 12-14, 2014. These proceedings cover the most recent trends in the emerging field of complex systems sciences & practices from an industrial and academic perspective, including the main industrial domains (aeronautic & aerospace, transportation & systems, defense & security, electronics & robotics, energy & environment, health & welfare services, software & e-services), scientific & technical topics (systems fundamentals, systems architecture & engineering, systems metrics & quality, systemic tools) and system types (transportation systems, embedded systems, software & information systems, systems of systems, artificial ecosystems). The CSD&M 2014 conference is organized under the guidance of the CESAMES non-profit organization, address: CESAMES, 8 rue de Hanovre, 75002 Paris, France.
With the advent and increasing popularity of Computer Supported Collaborative Learning (CSCL) and e-learning technologies, the need of "automatic assessment "and" "of" teacher/tutor support" for the two tightly intertwined activities of "comprehension" of reading materials and of "collaboration" among peers has grown significantly. In this context, a polyphonic model of discourse derived from Bakhtin s work as a paradigm is used for analyzing both general texts and CSCL conversations in a unique framework focused on different facets of textual cohesion. As specificity of our analysis, the "individual learning" perspective is focused on the identification of reading strategies and on providing a multi-dimensional textual complexity model, whereas the "collaborative learning" dimension is centered on the evaluation of participants involvement, as well as on collaboration assessment. Our approach based on advanced Natural Language Processing techniques provides a qualitative estimation of the learning process and enhances understanding as a mediator of learning by providing automated feedback to both learners and teachers or tutors. The main benefits are its flexibility, extensibility and nevertheless specificity for covering multiple stages, starting from reading classroom materials, to discussing on specific topics in a collaborative manner and finishing the feedback loop by verbalizing metacognitive thoughts."
The increasing diversity of Infonnation Communication Technologies and their equally diverse range of uses in personal, professional and official capacities raise challenging questions of identity in a variety of contexts. Each communication exchange contains an identifier which may, or may not, be intended by the parties involved. What constitutes an identity, how do new technologies affect identity, how do we manage identities in a globally networked infonnation society? th th From the 6 to the 10 August 2007, IFIP (International Federation for Infonnation Processing) working groups 9. 2 (Social Accountability), 9. 6/11. 7 (IT rd Misuse and the Law) and 11. 6 (Identity Management) hold their 3 Intemational Summer School on "The Future of Identity in the Infonnation Society" in cooperation with the EU Network of Excellence FIDIS at Karlstad University. The Summer School addressed the theme of Identity Management in relation to current and future technologies in a variety of contexts. The aim of the IFIP summer schools has been to introduce participants to the social implications of Infonnation Technology through the process of infonned discussion. Following the holistic approach advocated by the involved IFIP working groups, a diverse group of participants ranging from young doctoral students to leading researchers in the field were encouraged to engage in discussion, dialogue and debate in an infonnal and supportive setting. The interdisciplinary, and intemational, emphasis of the Summer School allowed for a broader understanding of the issues in the technical and social spheres.
The complexity and sensitivity of modern industrial processes and systems increasingly require adaptable advanced control protocols. These controllers have to be able to deal with circumstances demanding "judgement" rather than simple "yes/no," "on/off" responses, circumstances where an imprecise linguistic description is often more relevant than a cut-and-dried numerical one. The ability of fuzzy systems to handle numeric and linguistic information within a single framework renders them efficacious in this form of expert control system. Divided into two parts, Fuzzy Logic, Identification and Predictive Control first shows you how to construct static and dynamic fuzzy models using the numerical data from a variety of real-world industrial systems and simulations. The second part demonstrates the exploitation of such models to design control systems employing techniques like data mining. Fuzzy Logic, Identification and Predictive Control is a comprehensive introduction to the use of fuzzy methods in many different control paradigms encompassing robust, model-based, PID-like and predictive control. This combination of fuzzy control theory and industrial serviceability will make a telling contribution to your research whether in the academic or industrial sphere and also serves as a fine roundup of the fuzzy control area for the graduate student. Advances in Industrial Control aims to report and encourage the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrialcontrol.
The problem of viability of hybrid systems is considered in this work. A model for a hybrid system is developed including a means of including three forms of uncertainty: transition dynamics, structural uncertainty, and parametric uncertainty. A computational basis for viability of hybrid systems is developed and applied to three control law classes. An approach is developed for robust viability based on two extensions of the controllability operator. The three-tank example is examined for both the viability problem and robust viability problem. The theory is applied through simulation to an active magnetic bearing system and to a batch polymerization process showing that viability can be satisfied in practice. The problem of viable attainability is examined based on the controllability operator approach introduced by Nerode and colleagues. Lastly, properties of the controllability operator are presented.
This book presents the most important findings from the 9th International Conference on Modelling, Identification and Control (ICMIC'17), held in Kunming, China on July 10-12, 2017. It covers most aspects of modelling, identification, instrumentation, signal processing and control, with a particular focus on the applications of research in multi-agent systems, robotic systems, autonomous systems, complex systems, and renewable energy systems. The book gathers thirty comprehensively reviewed and extended contributions, which help to promote evolutionary computation, artificial intelligence, computation intelligence and soft computing techniques to enhance the safety, flexibility and efficiency of engineering systems. Taken together, they offer an ideal reference guide for researchers and engineers in the fields of electrical/electronic engineering, mechanical engineering and communication engineering.
Functional analysis owes much of its early impetus to problems that arise in the calculus of variations. In turn, the methods developed there have been applied to optimal control, an area that also requires new tools, such as nonsmooth analysis. This self-contained textbook gives a complete course on all these topics. It is written by a leading specialist who is also a noted expositor. This book provides a thorough introduction to functional analysis and includes many novel elements as well as the standard topics. A short course on nonsmooth analysis and geometry completes the first half of the book whilst the second half concerns the calculus of variations and optimal control. The author provides a comprehensive course on these subjects, from their inception through to the present. A notable feature is the inclusion of recent, unifying developments on regularity, multiplier rules, and the Pontryagin maximum principle, which appear here for the first time in a textbook. Other major themes include existence and Hamilton-Jacobi methods. The many substantial examples, and the more than three hundred exercises, treat such topics as viscosity solutions, nonsmooth Lagrangians, the logarithmic Sobolev inequality, periodic trajectories, and systems theory. They also touch lightly upon several fields of application: mechanics, economics, resources, finance, control engineering. Functional Analysis, Calculus of Variations and Optimal Control is intended to support several different courses at the first-year or second-year graduate level, on functional analysis, on the calculus of variations and optimal control, or on some combination. For this reason, it has been organized with customization in mind. The text also has considerable value as a reference. Besides its advanced results in the calculus of variations and optimal control, its polished presentation of certain other topics (for example convex analysis, measurable selections, metric regularity, and nonsmooth analysis) will be appreciated by researchers in these and related fields.
This book provides a comprehensive, up-to-date account on recent applications of fuzzy sets and possibility theory in reliability and safety analysis. Various aspects of system's reliability, quality control, reliability and safety of man-machine systems fault analysis, risk assessment and analysis, structural, seismic, safety, etc. are discussed. The book provides new tools for handling non-probabilistic aspects of uncertainty in these problems. It is the first in this field in the world literature.
Ontologically Controlled Autonomous Systems: Principles, Operations and Architecture presents the main principles, operations and architecture involved in the design of a novel type of supervisory controller called an ontological controller. An ontological controller can be used to supervise any type of controller; however its intended applications are industrial-strength complex autonomous control systems using advanced programmable controllers. An ontological controller supervises a programmable controller in order to: Detect dynamically when the programmable controller is in a problematic control situation due to a violation of ontological assumptions and thus unable to achieve a pre-specified control goal (i.e. the identification operation), and When possible, move the programmable controller into such a state from which it can regain its control and eventually achieve the pre-specified control goal in spite of the previous violation of ontological assumptions (i.e. the recovery operation). Ontologically Controlled Autonomous Systems: Principles, Operations and Architecture presents for the first time a complete formal framework and results for ontological control. All results presented in the book originate from the practical industrial experience of the author. The intended readers for Ontologically Controlled Autonomous Systems: Principles, Operations and Architecture are professionals and students working in industrial control, discrete control, discrete-event systems, artificial intelligence, autonomous systems, programmable (logic) control design, robotics, real-time planning, safety-critical systems, Petri nets and PLC standards such as IEC1131.
Developments in electronic hardware, particularly microprocessors and solid-state cameras, have resulted in a vast explosion in the range and variety of applications to which intelligent processing may be applied to yield cost-effective automation. Typical examples include automated visual inspection and repetitive assembly. The technology required is recent and specialized, and is thus not widely known. VISION AND INFORMATION PROCESSING FOR AUTOMATION has arisen from a short course given by the authors to introduce potential users to the technology. Its content is a development and extension of material presented in the course. The objective of the book is to introduce readers to modern concepts and techniques basic to intelligent automation, and explain how these are applied to prac tical problems. Its emphasis is on machine vision. Intelligent instrumentation is concerned with processing infor mation, and an appreciation of the nature of information is essential in configuring instrumentation to handle it effiCiently. An understand ing of the fundamental principles of efficient computation and of the way in which machines make decisions is vital for the same reasons. Selection of appropriate sensing (e.g., camera type and configuration), of illumination, of hardware for processing (microchip or parallel processor?) to give most effective information flow, and of the most appropriate processing algorithms is critical in obtaining an optimal solution. Analysis of performance, to demonstrate that requirements have been met, and to identify the causes if they have not, is also important. All of these topics are covered in this volume."
This book presents recent research work on stochastic jump hybrid systems. Specifically, the considered stochastic jump hybrid systems include Markovian jump Ito stochastic systems, Markovian jump linear-parameter-varying (LPV) systems, Markovian jump singular systems, Markovian jump two-dimensional (2-D) systems, and Markovian jump repeated scalar nonlinear systems. Some sufficient conditions are first established respectively for the stability and performances of those kinds of stochastic jump hybrid systems in terms of solution of linear matrix inequalities (LMIs). Based on the derived analysis conditions, the filtering and control problems are addressed. The book presents up-to-date research developments and novel methodologies on stochastic jump hybrid systems. The contents can be divided into two parts: the first part is focused on robust filter design problem, while the second part is put the emphasis on robust control problem. These methodologies provide a framework for stability and performance analysis, robust controller design, and robust filter design for the considered systems. Solutions to the design problems are presented in terms of LMIs. The book is a timely reflection of the developing area of filtering and control theories for Markovian jump hybrid systems with various kinds of imperfect information. It is a collection of a series of latest research results and therefore serves as a useful textbook for senior and/or graduate students who are interested in knowing 1) the state-of-the-art of linear filtering and control areas, and 2) recent advances in stochastic jump hybrid systems. The readers will also benefit from some new concepts, new models and new methodologies with practical significance in control engineering and signal processing.
Upon hearing that Ronald Coase had been awarded the Nobel Prize, a fellow economist's first response was to ask with whom Coase had shared the Prize. Whether this response was idiosyncratic or not, I do not know; I expect not. Part of this type of reaction can no doubt be explained by the fact that Coase has often been characterized as an economist who wrote only two significant or influential papers: "The Nature of the Firm" (1937) and "The Problem of Social Cost" (1960). And by typical professional standards of "significant" and "influential" (i. e. , widely read and cited), this perception embodies a great deal of truth, even subsequent to Coase's receipt of the Prize. This is not to say that there have not been other important works - "The Marginal Cost Controversy" (1946) and "The Lighthouse in Economics" (1974) come immediately to mind here - only that in a random sample of, say, one hundred economists, one would likely find few who could list a Coase bibliography beyond the two classic pieces noted above, in spite of Coase's significant publication record. ' The purpose of this collection is to assess the development of, tensions within, and prospects for Coasean Economics - those aspects of economic analysis that have evolved out of Coase's path-breaking work. Two major strands of research can be identified here: law and economics and the New Institutional Economics.
Pulse Code Modulation Techniques brings together the theory and practice of PCM at the physical layer, where the "bits meet the silicon", so to speak. The key topics of symbol encoding, detection and synchronization are discussed, in detail, both from a theoretical and a practical standpoint. Topics which have been largely absent in text books, such as multiplexing, formatting and format synchronization, are also considered. Although PCM evolved as a communication technology, it has become an important technology in data recording. In a sense, magnetic or optical media are just specialized communication media and the key technologies discussed in this book are just as important to recording applications as to communications. PCM codes used for magnetic recording applications are discussed along with traditional communication codes. The design, analysis and implementation of a PCM system requires knowledge of very specific techniques associated with detection, synchronization and coding. The techniques have evolved from both ad hoc methods and complex theory. One of the goals of this book is to bridge the gap between theory and practice in the key techniques. Matched filters are not only discussed theoretically, but means for implementing them are also considered. The same is true with symbol synchronization.
This volume contains the courses given at the Sixth Summer School on Complex Systems held at Facultad de Ciencias Fisicas y Maternaticas, Universidad de Chile at Santiago, Chile, from 14th to 18th December 1998. This school was addressed to graduate students and researchers working on areas related with recent trends in Complex Systems, including dynamical systems, cellular automata, complexity and cutoff in Markov chains. Each contribution is devoted to one of these subjects. In some cases they are structured as surveys, presenting at the same time an original point of view and showing mostly new results. The paper of Pierre Arnoux investigates the relation between low complex systems and chaotic systems, showing that they can be put into relation by some re normalization operations. The case of quasi-crystals is fully studied, in particular the Sturmian quasi-crystals. The paper of Franco Bagnoli and Raul Rechtman establishes relations be tween Lyapunov exponents and synchronization processes in cellular automata. The principal goal is to associate tools, usually used in physical problems, to an important problem in cellularautomata and computer science, the synchronization problem. The paper of Jacques Demongeot and colleagues gives a presentation of at tractors of dynamical systems appearing in biological situations. For instance, the relation between positive or negative loops and regulation systems."
This research aims to achieve a fundamental understanding of synchronization and its interplay with the topology of complex networks. Synchronization is a ubiquitous phenomenon observed in different contexts in physics, chemistry, biology, medicine and engineering. Most prominently, synchronization takes place in the brain, where it is associated with several cognitive capacities but is - in abundance - a characteristic of neurological diseases. Besides zero-lag synchrony, group and cluster states are considered, enabling a description and study of complex synchronization patterns within the presented theory. Adaptive control methods are developed, which allow the control of synchronization in scenarios where parameters drift or are unknown. These methods are, therefore, of particular interest for experimental setups or technological applications. The theoretical framework is demonstrated on generic models, coupled chemical oscillators and several detailed examples of neural networks.
Every thought is a throw of dice. Stephane Mallarme This book is the last one of a trilogy which reports a part of our research work over nearly thirty years (we discard our non-conventional results in automatic control theory and applications on the one hand, and fuzzy sets on the other), and its main key words are Information Theory, Entropy, Maximum Entropy Principle, Linguistics, Thermodynamics, Quantum Mechanics, Fractals, Fractional Brownian Motion, Stochastic Differential Equations of Order n, Stochastic Optimal Control, Computer Vision. Our obsession has been always the same: Shannon's information theory should play a basic role in the foundations of sciences, but subject to the condition that it be suitably generalized to allow us to deal with problems which are not necessarily related to communication engineering. With this objective in mind, two questions are of utmost importance: (i) How can we introduce meaning or significance of information in Shannon's information theory? (ii) How can we define and/or measure the amount of information involved in a form or a pattern without using a probabilistic scheme? It is obligatory to find suitable answers to these problems if we want to apply Shannon's theory to science with some chance of success. For instance, its use in biology has been very disappointing, for the very reason that the meaning of information is there of basic importance, and is not involved in this approach.
This monograph is a first in the world to present three approaches for stability analysis of solutions of dynamic equations. The first approach is based on the application of dynamic integral inequalities and the fundamental matrix of solutions of linear approximation of dynamic equations. The second is based on the generalization of the direct Lyapunovs method for equations on time scales, using scalar, vector and matrix-valued auxiliary functions. The third approach is the application of auxiliary functions (scalar, vector, or matrix-valued ones) in combination with differential dynamic inequalities. This is an alternative comparison method, developed for time continuous and time discrete systems.In recent decades, automatic control theory in the study of air- and spacecraft dynamics and in other areas of modern applied mathematics has encountered problems in the analysis of the behavior of solutions of time continuous-discrete linear and/or nonlinear equations of perturbed motion. In the book "Men of Mathematics," 1937, E.T.Bell wrote: "A major task of mathematics today is to harmonize the continuous and the discrete, to include them in one comprehensive mathematics, and to eliminate obscurity from both."Mathematical analysis on time scales accomplishes exactly this. This research has potential applications in such areas as theoretical and applied mechanics, neurodynamics, mathematical biology and finance among others.
This book is based on a seminar given at the University of California at Los Angeles in the Spring of 1975. The choice of topics reflects my interests at the time and the needs of the students taking the course. Initially the lectures were written up for publication in the Lecture Notes series. How ever, when I accepted Professor A. V. Balakrishnan's invitation to publish them in the Springer series on Applications of Mathematics it became necessary to alter the informal and often abridged style of the notes and to rewrite or expand much of the original manuscript so as to make the book as self-contained as possible. Even so, no attempt has been made to write a comprehensive treatise on filtering theory, and the book still follows the original plan of the lectures. While this book was in preparation, the two-volume English translation of the work by R. S. Liptser and A. N. Shiryaev has appeared in this series. The first volume and the present book have the same approach to the sub ject, viz. that of martingale theory. Liptser and Shiryaev go into greater detail in the discussion of statistical applications and also consider inter polation and extrapolation as well as filtering."
Quantitative Feedback Design of Linear and Nonlinear Control Systems is a self-contained book dealing with the theory and practice of Quantitative Feedback Theory (QFT). The author presents feedback synthesis techniques for single-input single-output, multi-input multi-output linear time-invariant and nonlinear plants based on the QFT method. Included are design details and graphs which do not appear in the literature, which will enable engineers and researchers to understand QFT in greater depth. Engineers will be able to apply QFT and the design techniques to many applications, such as flight and chemical plant control, robotics, space, vehicle and military industries, and numerous other uses. All of the examples were implemented using MatlabA(R) Version 5.3; the script file can be found at the author's Web site. QFT results in efficient designs because it synthesizes a controller for the exact amount of plant uncertainty, disturbances and required specifications. Quantitative Feedback Design of Linear and Nonlinear Control Systems is a pioneering work that illuminates QFT, making the theory - and practice - come alive.
This monograph explores a dual variational formulation of solutions to nonlinear diffusion equations with general nonlinearities as null minimizers of appropriate energy functionals. The author demonstrates how this method can be utilized as a convenient tool for proving the existence of these solutions when others may fail, such as in cases of evolution equations with nonautonomous operators, with low regular data, or with singular diffusion coefficients. By reducing it to a minimization problem, the original problem is transformed into an optimal control problem with a linear state equation. This procedure simplifies the proof of the existence of minimizers and, in particular, the determination of the first-order conditions of optimality. The dual variational formulation is illustrated in the text with specific diffusion equations that have general nonlinearities provided by potentials having various stronger or weaker properties. These equations can represent mathematical models to various real-world physical processes. Inverse problems and optimal control problems are also considered, as this technique is useful in their treatment as well.
This book presents a foundation for a broad class of mobile robot mapping and navigation methodologies for indoor, outdoor, and exploratory missions. It addresses the challenging problem of autonomous navigation in dynamic environments, presenting new ideas and approaches in this emerging technical domain. Coverage discusses in detail various related challenging technical aspects and addresses upcoming technologies in this field.
|
You may like...
Computer Aided Verification
Hana Chockler, Georg Weissenbacher
Hardcover
R2,035
Discovery Miles 20 350
Encyclopedia of Information Science and…
Mehdi Khosrow-Pour, D.B.A.
Hardcover
R20,961
Discovery Miles 209 610
|