![]() |
![]() |
Your cart is empty |
||
Books > Reference & Interdisciplinary > Communication studies > Information theory
This special volume is dedicated to Boris M. Mordukhovich, on the occasion of his 60th birthday, and aims to celebrate his fundamental contributionsto variational analysis, generalizeddifferentiationand their applications.A main exampleof these contributions is Boris' recent opus magnus "Variational Analysis and Generalized Differentiation"(vols. I and II) [2,3]. A detailed explanationand careful description of Boris' research and achievements can be found in [1]. Boris' active work and jovial attitude have constantly inspired researchers of several generations, with whom he has generously shared his knowledgeand ent- siasm, along with his well-known warmth and human touch. Variationalanalysis is a rapidlygrowing?eld within pure and applied mathem- ics, with numerous applications to optimization, control theory, economics, en- neering, and other disciplines. Each of the 12 chapters of this volume is a carefully reviewed paper in the ?eld of variational analysis and related topics. Many chapters of this volume were presented at the International Symposium on Variational Analysis and Optimization (ISVAO), held in the Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan, from November 28 to November 30, 2008. The symposium was organized in honour of Boris' 60thbirthday.It broughttogetherBorisandotherresearchersto discusssta- of-the-art results in variational analysis and its applications, with emphasis on op- mization and control. We thank the organizers and participants of the symposium, who made the symposium a highly bene?cial and enjoyable event. We are also grateful to all the authors of this special volume, who have taken the opportunityto celebrate Boris' birthdayand his decadesof contributionsto the area.
This book contains a selected collection of papers providing an overview of the state of the art in the study of dynamical systems. A broad range of aspects of dynamical systems is covered, focusing on discrete and continuous dynamical systems, bifurcation theory, celestial mechanics, delay difference and differential equations, Hamiltonian systems and also the classic challenges in planar vector fields. Particular attention has been posed on real-world applications of dynamical systems, showing the constant interaction of the field with other sciences. The authors have made a special effort in placing the reader at the frontiers of current knowledge in the discipline. In this way, recent advances and new trends become available. The papers are based on talks given at the International Conference Dynamical Systems: 100 years after Poincare held at the University of Oviedo, Gijon (Spain), on September 3-7, 2012. Recent advances and new trends have been discussed during the meeting, including applications to a wide range of disciplines such as Biology, Chemistry, Physics and Economics, among others. The memory of Poincare, who laid the foundations of dynamical systems, provided the backdrop for the discussion of the new challenges 100 years after his death.
This book is devoted to a new branch of experimental design theory called simulation experimental design. There are many books devoted either to the theory of experimental design or to system simulation techniques, but in this book an approach to combine both fields is developed. Especially the mathematical theory of such universal variance reduction techniques as splitting and Russian Roulette is explored. The book contains a number of results on regression design theory related to nonlinear problems, the E-optimum criterion and designs which minimize bias. Audience: This volume will be of value to readers interested in systems simulation, applied statistics and numerical methods with basic knowledge of applied statistics and linear algebra.
This book presents the latest research on applications of artificial intelligence and the Internet of Things in renewable energy systems. Advanced renewable energy systems must necessarily involve the latest technology like artificial intelligence and Internet of Things to develop low cost, smart and efficient solutions. Intelligence allows the system to optimize the power, thereby making it a power efficient system; whereas, Internet of Things makes the system independent of wire and flexibility in operation. As a result, intelligent and IOT paradigms are finding increasing applications in the study of renewable energy systems. This book presents advanced applications of artificial intelligence and the internet of things in renewable energy systems development. It covers such topics as solar energy systems, electric vehicles etc. In all these areas applications of artificial intelligence methods such as artificial neural networks, genetic algorithms, fuzzy logic and a combination of the above, called hybrid systems, are included. The book is intended for a wide audience ranging from the undergraduate level up to the research academic and industrial communities engaged in the study and performance prediction of renewable energy systems.
This book addresses the processes of stochastic structure formation in two-dimensional geophysical fluid dynamics based on statistical analysis of Gaussian random fields, as well as stochastic structure formation in dynamic systems with parametric excitation of positive random fields f(r,t) described by partial differential equations. Further, the book considers two examples of stochastic structure formation in dynamic systems with parametric excitation in the presence of Gaussian pumping. In dynamic systems with parametric excitation in space and time, this type of structure formation either happens - or doesn't! However, if it occurs in space, then this almost always happens (exponentially quickly) in individual realizations with a unit probability. In the case considered, clustering of the field f(r,t) of any nature is a general feature of dynamic fields, and one may claim that structure formation is the Law of Nature for arbitrary random fields of such type. The study clarifies the conditions under which such structure formation takes place. To make the content more accessible, these conditions are described at a comparatively elementary mathematical level by employing ideas from statistical topography.
Geometrical Dynamics of Complex Systems is a graduate-level monographic textbook. Itrepresentsacomprehensiveintroductionintorigorousgeometrical dynamicsofcomplexsystemsofvariousnatures. By'complexsystems', inthis book are meant high-dimensional nonlinear systems, which can be (but not necessarily are) adaptive. This monograph proposes a uni?ed geometrical - proachtodynamicsofcomplexsystemsofvariouskinds: engineering, physical, biophysical, psychophysical, sociophysical, econophysical, etc. As their names suggest, all these multi-input multi-output (MIMO) systems have something in common: the underlying physics. However, instead of dealing with the pop- 1 ular 'soft complexity philosophy', we rather propose a rigorous geometrical and topological approach. We believe that our rigorous approach has much greater predictive power than the soft one. We argue that science and te- nology is all about prediction and control. Observation, understanding and explanation are important in education at undergraduate level, but after that it should be all prediction and control. The main objective of this book is to show that high-dimensional nonlinear systems and processes of 'real life' can be modelled and analyzed using rigorous mathematics, which enables their complete predictability and controllability, as if they were linear systems. It is well-known that linear systems, which are completely predictable and controllable by de?nition - live only in Euclidean spaces (of various - mensions). They are as simple as possible, mathematically elegant and fully elaborated from either scienti?c or engineering side. However, in nature, no- ing is linear. In reality, everything has a certain degree of nonlinearity, which means: unpredictability, with subsequent uncontrollability.
Control of Linear Parameter Varying Systems compiles state-of-the-art contributions on novel analytical and computational methods for addressing system identification, model reduction, performance analysis and feedback control design and addresses address theoretical developments, novel computational approaches and illustrative applications to various fields. Part I discusses modeling and system identification of linear parameter varying systems, Part II covers the importance of analysis and control design when working with linear parameter varying systems (LPVS) , Finally, Part III presents an applications based approach to linear parameter varying systems, including modeling of a turbocharged diesel engines, Multivariable control of wind turbines, modeling and control of aircraft engines, control of an autonomous underwater vehicles and analysis and synthesis of re-entry vehicles.
The essays collected in this volume address the full range of pedagogical and programmatic issues specifically facing technical communication teachers and programme directors in the computer age. The authors locate computers and computing activities within the richly-textured cultural contexts of a technological society, focusing on the technical communication instructional issues that remain most important as old versions of hardware and software are endlessly replaced by new ones. Part One, "Broadening Notions of Computer Literacy", complicates mechanistic approaches to computer-related instruction by locating the design and use of hardware and software within social, cultural, political, ethical and legal contexts. Part Two examines how teachers and programme directors can encourage critical literacies in their classrooms and programmes. At the same time, it considers how computer technologies such as the World Wide Web, hypertext, electronic mail, Internet discussion groups and real-time conferencing environments might challenge traditional notions of technical communication pedagogical practice. Building on the first two sections, Part Three, "Examining Computer-Supported Communication Facilities from Pedagogical Perspectives", explores a wide range of instructional and political challenges in designing and supporting the robust computing needs of technical communication programmes. Part Four, "Planning for Technological Changes in Technical Communication Programmes", outlines some long-term ways of thinking about computers and technical communications that are instructionally and institutionally productive for students, teachers and programme directors.
This book joins the multitude of Control Systems books now available, but is neither a textbook nor a monograph. Rather it may be described as a resource book or survey of the elements/essentials of feedback control systems. The material included is a result of my development, over a period of several years, of summaries written to supplement a number of standard textbooks for undergraduate and early post-graduate courses. Those notes, plus more work than I care right now to contemplate, are intended to be helpful both to students and to professional engineers. Too often, standard textbooks seem to overlook some of the engineering realities of (roughly) how much things cost or how big of hardware for computer programs for simple algorithms are, sensing and actuation, of special systems such as PLCs and PID controllers, of the engineering of real systems from coverage of SISO theories, and of the special characteristics of computers, their programming, and their potential interactions into systems. In particular, students with specializations other than control systems are not being exposed to the breadth of the considerations needed in control systems engineering, perhaps because it is assumed that they are always to be part of a multicourse sequence taken by specialists. The lectures given to introduce at least some of these aspects were more effective when supported by written material: hence, the need for my notes which preceded this book.
One of the most important tasks faced by decision-makers in
business and government is that of selection. Selection problems
are challenging in that they require the balancing of multiple,
often conflicting, criteria. In recent years, a number of
interesting decision aids have become available to assist in such
decisions.
Optimization, simulation and control play an increasingly important role in science and industry. Because of their numerous applications in various disciplines, research in these areas is accelerating at a rapid pace. This volume brings together the latest developments in these areas of research as well as presents applications of these results to a wide range of real-world problems. The book is composed of invited contributions by experts from around the world who work to develop and apply new optimization, simulation and control techniques either at a theoretical level or in practice. Some key topics presented include: equilibrium problems, multi-objective optimization, variational inequalities, stochastic processes, numerical analysis, optimization in signal processing, and various other interdisciplinary applications. This volume can serve as a useful resource for researchers, practitioners, and advanced graduate students of mathematics and engineering working in research areas where results in optimization, simulation and control can be applied.
'Rana el Kaliouby's vision for how technology should work in parallel with empathy is bold, inspired and hopeful' Arianna Huffington, founder and CEO of Thrive Global 'This lucid and captivating book by a renowned pioneer of emotion-AI tackles one of the most pressing issues of our time: How can we ensure a future where this technology empowers rather than surveils and manipulates us?' Max Tegmark, professor of physics at Massachusetts Institute of Technology and author of Life 3.0 We are entering an empathy crisis. Most of our communication is conveyed through non-verbal cues - facial expressions, tone of voice, body language - nuances that are completely lost when we interact through our smartphones and other technology. The result is a digital universe that's emotion-blind - a society lacking in empathy. Rana el Kaliouby discovered this when she left Cairo, a newly-married, Muslim woman, to take up her place at Cambridge University to study computer science. Many thousands of miles from home, she began to develop systems to help her better connect with her family. She started to pioneer the new field of Emotional Intelligence (EI). She now runs her company, Affectiva (the industry-leader in this emerging field) that builds EI into our technology and develops systems that understand humans the way we understand one another. In a captivating memoir, Girl Decoded chronicles el Kaliouby's mission to humanise technology and what she learns about humanity along the way.
This monograph contains an in-depth analysis of the dynamics given by a linear Hamiltonian system of general dimension with nonautonomous bounded and uniformly continuous coefficients, without other initial assumptions on time-recurrence. Particular attention is given to the oscillation properties of the solutions as well as to a spectral theory appropriate for such systems. The book contains extensions of results which are well known when the coefficients are autonomous or periodic, as well as in the nonautonomous two-dimensional case. However, a substantial part of the theory presented here is new even in those much simpler situations. The authors make systematic use of basic facts concerning Lagrange planes and symplectic matrices, and apply some fundamental methods of topological dynamics and ergodic theory. Among the tools used in the analysis, which include Lyapunov exponents, Weyl matrices, exponential dichotomy, and weak disconjugacy, a fundamental role is played by the rotation number for linear Hamiltonian systems of general dimension. The properties of all these objects form the basis for the study of several themes concerning linear-quadratic control problems, including the linear regulator property, the Kalman-Bucy filter, the infinite-horizon optimization problem, the nonautonomous version of the Yakubovich Frequency Theorem, and dissipativity in the Willems sense. The book will be useful for graduate students and researchers interested in nonautonomous differential equations; dynamical systems and ergodic theory; spectral theory of differential operators; and control theory.
This edited monograph provides a comprehensive and in-depth analysis of sliding mode control, focusing on event-triggered implementation. The technique allows to prefix the steady-state bounds of the system, and this is independent of any boundary disturbances. The idea of event-triggered SMC is developed for both single input / single output and multi-input / multi-output linear systems. Moreover, the reader learns how to apply this method to nonlinear systems. The book primarily addresses research experts in the field of sliding mode control, but the book may also be beneficial for graduate students.
"Takagi-Sugeno Fuzzy Systems Non-fragile H-infinity Filtering"
investigates the problem of non-fragile H-infinity filter design
for Takagi-Sugeno (T-S) fuzzy systems. Given a T-S fuzzy system,
the objective of this book is to design an H-infinity filter with
the gain variations such that the filtering error system guarantees
a prescribed H-infinity performance level. Furthermore, it
demonstrates that the solution of non-fragile H-infinity filter
design problem can be obtained by solving a set of linear matrix
inequalities (LMIs).
This book focuses on bifurcation and stability in nonlinear discrete systems, including monotonic and oscillatory stability. It presents the local monotonic and oscillatory stability and bifurcation of period-1 fixed-points on a specific eigenvector direction, and discusses the corresponding higher-order singularity of fixed-points. Further, it explores the global analysis of monotonic and oscillatory stability of fixed-points in 1-dimensional discrete systems through 1-dimensional polynomial discrete systems. Based on the Yin-Yang theory of nonlinear discrete systems, the book also addresses the dynamics of forward and backward nonlinear discrete systems, and the existence conditions of fixed-points in said systems. Lastly, in the context of local analysis, it describes the normal forms of nonlinear discrete systems and infinite-fixed-point discrete systems. Examining nonlinear discrete systems from various perspectives, the book helps readers gain a better understanding of the nonlinear dynamics of such systems.
With collective behaviors playing a fundamental role in many scientific and technical disciplines, the book, after an overview on the background to systemics, introduces the concept of COLLECTIVE BEING as a Multiple System established by processes of emergence and self-organization of the same agents simultaneously or dynamically interacting in different ways. The general principles underlying this approach are grounded on the theoretical role of the observer. This extended view allows to model in a more suitable way complex systems, such as in physics, biology and economics. The Dynamical Usage of Models (DYSAM) is the related modelling methodology. This innovating approach is applied to artificial and natural systems equipped with cognitive systems, such as autonomous robots and social systems. The authors discuss in two different chapters both traditional (i.e. based on dynamical systems and dissipative structures) and non-traditional (i.e. based on theory of phase transitions, Synergetics and connectionistic models) models of emergence. The book also introduces an innovative methodology for detecting the establishment of processes of emergence based on changes of ergodicity. After a theoretical introduction of the concepts, the authors discuss the application to social systems and cognitive systems. Applications to social systems deal with issues such as representing and distinguishing growth and development, sustainable development, ethics and its crucial role to induce and maintain emergence of social systems, virtual systems, knowledge management and organizational learning. Applications to cognitive systems deal with approaches going beyond computationalism, theories ofconsciousness and embodied cognition. Two conclusive appendices on (1) Some systemic properties and (2) Some questions and answers about Systemics, help the reader to have a synthesized view of the book.
In wntmg this monograph my aim has been to present a "geometric" approach to the structural synthesis of multivariable control systems that are linear, time-invariant and of finite dynamic order. The book is ad dressed to graduate students specializing in control, to engineering scientists involved in control systems research and development, and to mathemati cians interested in systems control theory. The label "geometric" in the title is applied for several reasons. First and obviously, the setting is linear state space and the mathematics chiefly linear algebra in abstract (geometric) style. The basic ideas are the familiar system concepts of controllability and observability, thought of as geometric prop erties of distinguished state subspaces. Indeed, the geometry was first brought in out of revulsion against the orgy of matrix manipulation which linear control theory mainly consisted of, around fifteen years ago. But secondly and of greater interest, the geometric setting rather quickly sug gested new methods of attacking synthesis which have proved to be intuitive and economical; they are also easily reduced to matrix arithmetic as soon as you want to compute. The essence of the "geometric" approach is just this: instead of looking directly for a feedback law (say u = Fx) which would solve your synthesis problem if a solution exists, first characterize solvability as a verifiable property of some constructible state subspace, say Y. Then, if all is well, you may calculate F from Y quite easily."
A large-scale system is composed of several interconnected subsystems. For such a system it is often desired to have some form of decentralization in the control structure, since it is typically not realistic to assume that all output measurements can be transmitted to every local control station. Problems of this kind can appear in electric power systems, communication networks, large space structures, robotic systems, economic systems, and traffic networks, to name only a few. Typical large-scale control systems have several local control stations which observe only local outputs and control only local inputs. All controllers are involved, however, in the control operation of the overall system. The focus of this book is on the efficient control of interconnected systems, and it presents systems analysis and controller synthesis techniques using a variety of methods. A systematic study of multi-input, multi-output systems is carried out and illustrative examples are given to clarify the ideas.
The World Wide Web is truly astounding. It has changed the way we interact, learn and innovate. It is the largest sociotechnical system humankind has created and is advancing at a pace that leaves most in awe. It is an unavoidable fact that the future of the world is now inextricably linked to the future of the Web. Almost every day it appears to change, to get better and increase its hold on us. For all this we are starting to see underlying stability emerge. The way that Web sites rank in terms of popularity, for example, appears to follow laws with which we are familiar. What is fascinating is that these laws were first discovered, not in fields like computer science or information technology, but in what we regard as more fundamental disciplines like biology, physics and mathematics. Consequently the Web, although synthetic at its surface, seems to be quite 'natural' deeper down, and one of the driving aims of the new field of Web Science is to discover how far down such 'naturalness' goes. If the Web is natural to its core, that raises some fundamental questions. It forces us, for example, to ask if the central properties of the Web might be more elemental than the truths we cling to from our understandings of the physical world. In essence, it demands that we question the very nature of information. Understanding Information and Computation is about such questions and one possible route to potentially mind-blowing answers.
This elementary book provides some state-of-the-art research results on broad disciplinary sciences on complex networks. It presents an in-depth study with detailed description of dynamics, controls and applications of complex networks. The contents of this book can be summarized as follows. First, the dynamics of complex networks, for example, the cluster dynamic analysis by using kernel spectral methods, community detection algorithms in bipartite networks, epidemiological modeling with demographics and epidemic spreading on multi-layer networks, are studied. Second, the controls of complex networks are investigated including topics like distributed finite-time cooperative control of multi-agent systems by applying homogenous-degree and Lyapunov methods, composite finite-time containment control for disturbed second-order multi-agent systems, fractional-order observer design of multi-agent systems, chaos control and anticontrol of complex systems via Parrondos game and many more. Third, the applications of complex networks provide some applicable carriers, which show the importance of theories developed in complex networks. In particular, a general model for studying time evolution of transition networks, deflection routing in complex networks, recommender systems for social networks analysis and mining, strategy selection in networked evolutionary games, integration and methods in computational biology, are discussed in detail.
This book is about morphogenesis as the genesis of forms. It is not restricted to plants growing from seed or animals developing from an embryo (although these do supply the most abundant examples) but also addresses kindred processes, from inorganic to social to biomorphic technology. It is about our morphogenetic universe: unplanned, unfair and frustratingly complicated but benevolent in allowing us to emerge, survive, and inquire into its laws.
This book focuses on the design of a multi-criteria automated vehicle longitudinal control system as an enhancement of the adaptive cruise control system. It analyses the effects of various parameters on the average traffic speed and the traction force of the vehicles in mixed traffic from a macroscopic point of view, and also demonstrates why research and development in speed control and predictive cruise control is important. The book also summarises the main steps of the system's robust control design, from the modelling to its synthesis, and discusses both the theoretical background and the practical computation method of the control invariant sets. The book presents the analysis and verification of the system both in a simulation environment and under real-world conditions. By including the systematic design of the predictive cruise control using road and traffic information, it shows how optimization criteria can lead to multiobjective solutions, and the advanced optimization and control design methods required. The book focuses on a particular method by which the unfavourable effect of the traffic flow consideration can be reduced. It also includes simulation examples in which the speed design is performed, while the analysis is carried out in simulation and visualization environments. This book is a valuable reference for researchers and control engineers working on traffic control, vehicle control and control theory. It is also of interest to students and academics as it provides an overview of the strong interaction between the traffic flow and an individual vehicle cruising from both a microscopic and a macroscopic point of view.
Welcome to the proceedings of the Seventh International Conference of the UK Systems Society being held at York University, United Kingdom from July 7th to 10th, 2002. It is a pleasure to be able to share with you this collection ofpapers that have been contributed by systems thinkers from around the world. As with previous UKSS conferences, the aim ofthis conference is to encourage debate and promote development of pertinent issues in systems theory and practice. In current times where the focus has moved from 'information' to 'knowledge' and where 'knowledge management', of everyday speak, it seemed fitting to 'knowledge assets' and so on, have become part offer a conference title of'Systems Theory and Practice in the Knowledge Age'. In keeping with another tradition of previous conferences, the UKSS Conference 2002 Committee decided to compile a collection ofdelegates' papers before the event as a platform from which to launch discussions in York. Ideas presented in the following papers will, undoubtedly, be developed during the dialogue generated at the conference and new papers will emerge. In his abstract for his plenary at this conference, Professor Peter Checkland throws down the gauntlet to systems thinking and its relevance in the knowledge age with the following statement: "30 Years In The Systems Movement: Disappointments I Have Known and Hopes/or the Future Springing from a lunchtime conversation at an American University, the Systems Movement is now nearly 50 years old. |
![]() ![]() You may like...
Environmental Risk Communication…
Susan Zummo Forney, Anthony J. Sadar
Hardcover
R4,030
Discovery Miles 40 300
Empowered or Left Behind - Use of…
DeeDee M. Bennett Gayle, Xiaojun (Jenny) Yuan
Hardcover
R1,620
Discovery Miles 16 200
Numerical Methods for Fractal-Fractional…
Muhammad Altaf Khan, Abdon Atangana
Hardcover
R4,181
Discovery Miles 41 810
|