Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Reference & Interdisciplinary > Communication studies > Information theory
This book bridges the current gap between the theory of symmetry-based dynamics and its application to model and analyze complex systems. As an alternative approach, the authors use the symmetry of the system directly to formulate the appropriate models, and also to analyze the dynamics. Complex systems with symmetry arise in a wide variety of fields, including communication networks, molecular dynamics, manufacturing businesses, ecosystems, underwater vehicle dynamics, celestial and spacecraft dynamics and continuum mechanics. A general approach for their analysis has been to derive a detailed model of their individual parts, connect the parts and note that the system contains some sort of symmetry, then attempt to exploit this symmetry in order to simplify numerical computations. This approach can result in highly complicated models that are difficult to analyze even numerically. The alternative approach, while nonstandard, is not entirely new among the mathematics community. However, there is much less familiarity with the techniques of symmetry-breaking bifurcation, as they apply to the engineering, design and fabrication, of complex systems, in particular, nonlinear sensor devices with special emphasis on the conceptualization and development of new technologies of magnetic sensors such as fluxgate magnetometers and SQUID (Superconducting Quantum Interference Devices), E-- (electric-field) sensors, and communication and navigation systems that require multiple frequencies of operation, such as radar and antenna devices as well as gyroscopic systems.
Computational intelligence encompasses a wide variety of techniques that allow computation to learn, to adapt, and to seek. That is, they may be designed to learn information without explicit programming regarding the nature of the content to be retained, they may be imbued with the functionality to adapt to maintain their course within a complex and unpredictably changing environment, and they may help us seek out truths about our own dynamics and lives through their inclusion in complex system modeling. These capabilities place our ability to compute in a category apart from our ability to erect suspension bridges, although both are products of technological advancement and reflect an increased understanding of our world. In this book, we show how to unify aspects of learning and adaptation within the computational intelligence framework. While a number of algorithms exist that fall under the umbrella of computational intelligence, with new ones added every year, all of them focus on the capabilities of learning, adapting, and helping us seek. So, the term unified computational intelligence relates not to the individual algorithms but to the underlying goals driving them. This book focuses on the computational intelligence areas of neural networks and dynamic programming, showing how to unify aspects of these areas to create new, more powerful, computational intelligence architectures to apply to new problem domains.
This book presents a comprehensive and detailed study on iterative learning control (ILC) for systems with iteration-varying trial lengths. Instead of traditional ILC, which requires systems to repeat on a fixed time interval, this book focuses on a more practical case where the trial length might randomly vary from iteration to iteration. The iteration-varying trial lengths may be different from the desired trial length, which can cause redundancy or dropouts of control information in ILC, making ILC design a challenging problem. The book focuses on the synthesis and analysis of ILC for both linear and nonlinear systems with iteration-varying trial lengths, and proposes various novel techniques to deal with the precise tracking problem under non-repeatable trial lengths, such as moving window, switching system, and searching-based moving average operator. It not only discusses recent advances in ILC for systems with iteration-varying trial lengths, but also includes numerous intuitive figures to allow readers to develop an in-depth understanding of the intrinsic relationship between the incomplete information environment and the essential tracking performance. This book is intended for academic scholars and engineers who are interested in learning about control, data-driven control, networked control systems, and related fields. It is also a useful resource for graduate students in the above field.
The book offers a comprehensive overview of controllability problems and minimum energy control for broad classes of dynamical systems, including linear, semilinear and nonlinear systems, which are important for modeling systems in automatic control, electrical engineering, mechanics and informatics. It develops the theory of controllability for both finite and infinite dimensional dynamical systems described by differential state equation, and studies in detail functional analysis and matrix algebra, which provide essential and effective tools for the new solutions of a number of important controllability problems. The theoretical results are illustrated by examples throughout the book. Primarily intended for academic researchers working in mathematical control theory, the self-contained text is easily accessible and particularly interesting for control engineering and applied mathematics graduates.
In this edited collection we commemorate the 60th birthday of Prof. Christopher Byrnes and the retirement of Prof. Anders Lindquist from the Chair of Optimization and Systems Theory at KTH. These papers were presented in part at a 2009 workshop in KTH, Stockholm, honoring the lifetime contributions of Professors Byrnes and Lindquist in various fields of applied mathematics.
Around the globe, there is an increasingly urgent need to provide opportunities for learners to embrace complexity; to develop the many skills and habits of mind that are relevant to today's complex and interconnected world; and to make learning more connected to our rapidly changing workplace and society. This presents an opportunity to (1) leverage new paradigms for understanding the structure and function of teaching and learning communities, and (2) to promote new approaches to developing methods, curricular materials, and resources. Network science - the study of connectivity - can play an important role in these activities, both as an important subject in teaching and learning and as a way to develop interconnected curricula. Since 2010, an international community of network science researchers and educators has come together to raise the global level of network literacy by applying ideas from network science to teaching and learning. Network Science in Education - which refers to both this community and to its activities - has evolved in response to the escalating activity in the field of network science and the need for people to be able to access the field through education channels. Network Science In Education: Transformational Approaches in Teaching and Learning appeals to both instructors and professionals, while offering case studies from a wide variety of activities that have been developed around the globe: the creation of entirely new courses and degree programs; tools for K-20 learners, teachers, and the general public; and in-depth analysis of selected programs. As network-based pedagogy and the community of practice continues to grow, we hope that the book's readers will join this vibrant network education community to build on these nascent ideas and help deepen the understanding of networks for all learners.
The book you hold in your hands is the outcome of the "2014 Interdisciplinary Symposium on Complex Systems" held in the historical city of Florence. The book consists of 37 chapters from 4 areas of Physical Modeling of Complex Systems, Evolutionary Computations, Complex Biological Systems and Complex Networks. All 4 parts contain contributions that give interesting point of view on complexity in different areas in science and technology. The book starts with a comprehensive overview and classification of complexity problems entitled Physics in the world of ideas: Complexity as Energy" , followed by chapters about complexity measures and physical principles, its observation, modeling and its applications, to solving various problems including real-life applications. Further chapters contain recent research about evolution, randomness and complexity, as well as complexity in biological systems and complex networks. All selected papers represent innovative ideas, philosophical overviews and state-of-the-art discussions on aspects of complexity. The book will be useful as an instructional material for senior undergraduate and entry-level graduate students in computer science, physics, applied mathematics and engineering-type work in the area of complexity. The book will also be valuable as a resource of knowledge for practitioners who want to apply complexity to solve real-life problems in their own challenging applications.
This book provides a valuable reference for digital forensics practitioners and cyber security experts operating in various fields of law enforcement, incident response and commerce. It is also aimed at researchers seeking to obtain a more profound knowledge of Digital Forensics and Cybercrime. Furthermore, the book is an exceptional advanced text for PhD and Master degree programmes in Digital Forensics and Cyber Security. Each chapter of this book is written by an internationally-renowned expert who has extensive experience in law enforcement, industry and academia. The increasing popularity in the use of IoT devices for criminal activities means that there is a maturing discipline and industry around IoT forensics. As technology becomes cheaper and easier to deploy in an increased number of discrete, everyday objects, scope for the automated creation of personalised digital footprints becomes greater. Devices which are presently included within the Internet of Things (IoT) umbrella have a massive potential to enable and shape the way that humans interact and achieve objectives. These also forge a trail of data that can be used to triangulate and identify individuals and their actions. As such, interest and developments in autonomous vehicles, unmanned drones and 'smart' home appliances are creating unprecedented opportunities for the research communities to investigate the production and evaluation of evidence through the discipline of digital forensics.
This ground-breaking volume explores social entrepreneurship from the perspective of complexity science and systems thinking. Case studies, models, simulations, and theoretical papers advance both theory and practice, providing an innovative and comprehensive look at these dynamic topics. Written by complexity theorists, international development practitioners, and experts in a variety of other disciplines, this must-have book is mandatory reading for everyone interested in this newly developing field.
This book gathers together much of the author's work - both old and new - to explore a number of the key increases in complexity seen in the natural world, seeking to explain each of them purely in terms of the features of fitness landscapes. In a very straightforward manner, the book introduces basic concepts to help readers follow the main ideas. By using variations of the NK model and including the concept of the Baldwin effect, the author presents new abstract models that are able to explain why sources of evolutionary innovation (genomes, symbiosis, sex, chromosomes, multicellularity) have been selected for and hence how complexity has increased over time in some lineages.
These proceedings from the 2012 symposium on "Chaos, complexity and leadership" reflect current research results from all branches of Chaos, Complex Systems and their applications in Management. Included are the diverse results in the fields of applied nonlinear methods, modeling of data and simulations, as well as theoretical achievements of Chaos and Complex Systems. Also highlighted are Leadership and Management applications of Chaos and Complexity Theory.
This book concerns the development of novel finite elements for the structural analysis of composite beams and blades. The introduction of material damping is also an important aspect of composite structures and it is presented here in terms of their static and dynamic behavior. The book thoroughly presents a new shear beam finite element, which entails new blade section mechanics, capable of predicting structural blade coupling due to composite coupling and/or internal section geometry. Theoretical background is further expanded towards the inclusion of nonlinear structural blade models and damping mechanics for composite structures. The models effectively include geometrically nonlinear terms due to large displacements and rotations, improve the modeling accuracy of very large flexible blades, and enable the modeling of rotational stiffening and buckling, as well as, nonlinear structural coupling. Validation simulations on specimen level study the geometric nonlinearities effect on the modal frequencies and damping values of composite strips of various angle-ply laminations under either tensile or buckling loading. A series of correlation cases between numerical predictions and experimental measurements give credence to the developed nonlinear beam finite element models and underline the essential role of new nonlinear damping and stiffness terms.
Rapid formation and development of new theories of systems science have become an important part of modern science and technology. For - ample, since the 1940s, there have appeared systems theory, information theory, fuzzy mathematics, cybernetics, dissipative structures, synergetics, catastrophe theory, chaos theory, bifurcations, ultra circulations, dynamics, and many other systems theories. Grey systems theory is also one of such systems theories that appeared initially in the 1980s. When the research of systems science and the method and technology of systems engineering are applied in various traditional disciplines, such as management science, decision science, and various scienti?c disciplines, a whole new group of new results and breakthroughs are obtained. Such a historical background has provided the environment and soil for grey systems theory to form and to develop rapidly in the past 20-plus years. More speci?cally, in 1982, Professor Deng Ju-Long published the ?rst research paper in the area of grey systems in the international journal entitled Systems and Control Letters, published by North-Holland Co. His paper was titled "Control Problems of Grey Systems. " The publication of this paper signalled the birth of grey systems theory after many years of e ective research of the founding father. This new theory soon caught the attention of the international academic community and practitioners of science. Many well-known scholars, such as Chinese academicians Qian Xueshen, Song Jian, and Zhang Zhongjun. Professor Roger W.
In this book, a generic model in as far as possible mathematical closed-formis developed that predicts the behavior of large self-organizing robot groups (robot swarms) based on their control algorithm. In addition, an extensive subsumption of the relatively young and distinctive interdisciplinary research field of swarm robotics is emphasized. The connection to many related fields is highlighted and the concepts and methods borrowed from these fields are described shortly.
Statistical modeling is a critical tool in scientific research. This book provides comprehensive explanations of the concepts and philosophy of statistical modeling, together with a wide range of practical and numerical examples. The authors expect this work to be of great value not just to statisticians but also to researchers and practitioners in various fields of research such as information science, computer science, engineering, bioinformatics, economics, marketing and environmental science. It 's a crucial area of study, as statistical models are used to understand phenomena with uncertainty and to determine the structure of complex systems. They re also used to control such systems, as well as to make reliable predictions in various natural and social science fields.
Robert Rosen was not only a biologist, he was also a brilliant mathematician whose extraordinary contributions to theoretical biology were tremendous. Founding, with this book, the area of Anticipatory Systems Theory is a remarkable outcome of his work in theoretical biology. This second edition of his book Anticipatory Systems, has been carefully revised and edited, and includes an Introduction by Judith Rosen. It has also been expanded with a set of Prolegomena by Dr. Mihai Nadin, who offers an historical survey of this fast growing field since the original work was published. There is also some exciting new work, in the form of an additional chapter on the Ontology of Anticipation, by Dr. John Kineman. An addendum-- with autobiographical reminiscences by Robert Rosen, himself, and a short story by Judith Rosen about her father-- adds a personal touch. This work, now available again, serves as the guiding foundations for the growing field of Anticipatory Systems and, indeed, any area of science that deals with living organisms in some way, including the study of Life and Mind. It will also be of interest to graduate students and researchers in the field of Systems Science.
This book provides an up-to-date introduction to information theory. In addition to the classical topics discussed, it provides the first comprehensive treatment of the theory of I-Measure, network coding theory, Shannon and non-Shannon type information inequalities, and a relation between entropy and group theory. ITIP, a software package for proving information inequalities, is also included. With a large number of examples, illustrations, and original problems, this book is excellent as a textbook or reference book for a senior or graduate level course on the subject, as well as a reference for researchers in related fields.
What are the relations between the shape of a system of cities and that of fish school? Which events should happen in a cell in order that it participates to one of the finger of our hands? How to interpret the shape of a sand dune? This collective book written for the non-specialist addresses these questions and more generally, the fundamental issue of the emergence of forms and patterns in physical and living systems. It is a single book gathering the different aspects of morphogenesis and approaches developed in different disciplines on shape and pattern formation. Relying on the seminal works of D'Arcy Thompson, Alan Turing and Rene Thom, it confronts major examples like plant growth and shape, intra-cellular organization, evolution of living forms or motifs generated by crystals. A book essential to understand universal principles at work in the shapes and patterns surrounding us but also to avoid spurious analogies.
" Models of Science Dynamics aims to capture the structure and evolution of science, the emerging arena in which scholars, science and the communication of science become themselves the basic objects of research. In order to capture the essence of phenomena as diverse as the structure of co-authorship networks or the evolution of citation diffusion patterns, such models can be represented by conceptual models based on historical and ethnographic observations, mathematical descriptions of measurable phenomena, or computational algorithms. Despite its evident importance, the mathematical modeling of science still lacks a unifying framework and a comprehensive study of the topic. This volume fills this gap, reviewing and describing major threads in the mathematical modeling of science dynamics for a wider academic and professional audience. The model classes presented cover stochastic and statistical models, system-dynamics approaches, agent-based simulations, population-dynamics models, and complex-network models. The book comprises an introduction and a foundational chapter that defines and operationalizes terminology used in the study of science, as well as a review chapter that discusses the history of mathematical approaches to modeling science from an algorithmic-historiography perspective. It concludes with a survey of remaining challenges for future science models and their relevance for science and science policy."
Hyperbolic geometry is an essential part of theoretical
astrophysics and cosmology. Besides specialists of these domains,
many specialists of new domains start to show a growing
interest This book gives the reader a deep and efficient introduction to an algorithmic approach to hyperbolic geometry. It focuses the attention on the possibilities to obtain in this frame the power of computing everything a computer can compute, that is to say: universality. The minimal ways to get universality are investigated in a large family of tilings of the hyperbolic plane. In several cases the best results are obtained.In all cases, the results are close to the theoretical best values. This gives rise to fantastic illustrations: the results are jewels in all meanings of the word. ------------------------ Maurice MARGENSTERN is professor emeritus at the University of
Lorraine, he is a member of LITA, the research unit of computer
science in the campus of Metz of this university. Professor
Margenstern is amongst top world experts in theory of computation,
mathematical machines and geometry. He is a pioneer
This book focuses on the basic control and filtering synthesis problems for discrete-time switched linear systems under time-dependent switching signals. Chapter 1, as an introduction of the book, gives the backgrounds and motivations of switched systems, the definitions of the typical time-dependent switching signals, the differences and links to other types of systems with hybrid characteristics and a literature review mainly on the control and filtering for the underlying systems. By summarizing the multiple Lyapunov-like functions (MLFs) approach in which different requirements on comparisons of Lyapunov function values at switching instants, a series of methodologies are developed for the issues on stability and stabilization, and l2-gain performance or tube-based robustness for l disturbance, respectively, in Chapters 2 and 3. Chapters 4 and 5 are devoted to the control and filtering problems for the time-dependent switched linear systems with either polytopic uncertainties or measurable time-varying parameters in different sense of disturbances. The asynchronous switching problem, where there is time lag between the switching of the currently activated system mode and the controller/filter to be designed, is investigated in Chapter 6. The systems with various time delays under typical time-dependent switching signals are addressed in Chapter 7.
This work addresses the topic of philosophical complexity, which shares certain assumptions with scientific complexity, cybernetics, and General Systems Theory, but which is also developing as a subject field in its own right. Specifically, the post-structural reading of philosophical complexity that was pioneered by Paul Cilliers is further developed in this study. To this end, the ideas of a number of contemporary French post-structural theorists and their predecessors - including Derrida, Nancy, Bataille, Levinas, Foucault, Saussure, Nietzsche, Heidegger, and Hegel - are introduced. The implications that their various insights hold for our understanding of complex human systems are teased out at the hand of the themes of economy, (social) ontology, subjectivity, epistemology, and ethics. The analyses are also illuminated at the hand of the problematic of the foreigner and the related challenges of showing hospitality to foreigners. The study presents a sophisticated account of both philosophical complexity and philosophies of difference. By relating these subject fields, the study also extends our understanding of philosophical complexity, and offers an original characterisation of the aforementioned philosophers as complex thinkers.
Computational Neuroscience - A First Course provides an essential introduction to computational neuroscience and equips readers with a fundamental understanding of modeling the nervous system at the membrane, cellular, and network level. The book, which grew out of a lecture series held regularly for more than ten years to graduate students in neuroscience with backgrounds in biology, psychology and medicine, takes its readers on a journey through three fundamental domains of computational neuroscience: membrane biophysics, systems theory and artificial neural networks. The required mathematical concepts are kept as intuitive and simple as possible throughout the book, making it fully accessible to readers who are less familiar with mathematics. Overall, Computational Neuroscience - A First Course represents an essential reference guide for all neuroscientists who use computational methods in their daily work, as well as for any theoretical scientist approaching the field of computational neuroscience.
The relay feedback test (RFT) has become a popular and efficient in process identification and automatic controller tuning. "Non-parametric Tuning of PID Controllers" couples new modifications of classical RFT with application-specific optimal tuning rules to form a non-parametric method of test-and-tuning. Test and tuning are coordinated through a set of common parameters so that a PID controller can obtain the desired gain or phase margins in a system exactly, even with unknown process dynamics. The concept of process-specific optimal tuning rules in the nonparametric setup, with corresponding tuning rules for flow, level pressure, and temperature control loops is presented in the text. Common problems of tuning accuracy based on parametric and non-parametric approaches are addressed. In addition, the text treats the parametric approach to tuning based on the modified RFT approach and the exact model of oscillations in the system under test using the locus of a perturbedrelay system (LPRS) method. Industrial loop tuning for distributed control systems using modified RFT is also described. Many of the problems of tuning rules optimization and identification with modified RFT are accompanied by MATLAB(r) code, downloadable from http: //extras.springer.com/978-1-4471-4464-9 to allow the reader to duplicate the results. "Non-parametric Tuning of PID Controllers" is written for readers with previous knowledge of linear control and will be of interest to academic control researchers and graduate students and to practitioners working in a variety of chemical- mechanical- and process-engineering-related industries.
This book, which presents the peer-reviewed post-proceedings of CSNDD 2012 and CSNDD 2014, addresses the important role that relevant concepts and tools from nonlinear and complex dynamics could play in present and future engineering applications. It includes 22 chapters contributed by outstanding researchers and covering various aspects of applications, including: structural health monitoring, diagnosis and damage detection, experimental methodologies, active vibration control and smart structures, passive control of structures using nonlinear energy sinks, vibro-impact dynamic MEMS/NEMS/AFM, energy-harvesting materials and structures, and time-delayed feedback control, as well as aspects of deterministic versus stochastic dynamics and control of nonlinear phenomena in physics. Researchers and engineers interested in the challenges posed and opportunities offered by nonlinearities in the development of passive and active control strategies, energy harvesting, novel design criteria, modeling and characterization will find the book to be an outstanding introduction. |
You may like...
Machine Learning for Cyber Physical…
Oliver Niggemann, Christian Kuhnert, …
Hardcover
R1,296
Discovery Miles 12 960
Encyclopedia of Information Science and…
Mehdi Khosrow-Pour, D.B.A.
Hardcover
R22,189
Discovery Miles 221 890
Navigating Information Literacy
Theo Bothma, Erica Cosijn, …
Paperback
|