![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Reference & Interdisciplinary > Communication studies > Information theory
This book addresses the application of methods used in statistical physics to complex systems-from simple phenomenological analogies to more complex aspects, such as correlations, fluctuation-dissipation theorem, the concept of free energy, renormalization group approach and scaling. Statistical physics contains a well-developed formalism that describes phase transitions. It is useful to apply this formalism for damage phenomena as well. Fractals, the Ising model, percolation, damage mechanics, fluctuations, free energy formalism, renormalization group, and scaling, are some of the topics covered in Statistical Physics of Phase Transitions.
This book brings together 12 chapters on a new stream of research examining complex phenomena in nonlinear systems-including engineering, physics, and social science. Complex Motions and Chaos in Nonlinear Systems provides readers a particular vantage of the nature and nonlinear phenomena in nonlinear dynamics that can develop the corresponding mathematical theory and apply nonlinear design to practical engineering as well as the study of other complex phenomena including those investigated within social science.
This book, along with its companion volume, Nonlinear Dynamics New Directions: Models and Applications, covers topics ranging from fractal analysis to very specific applications of the theory of dynamical systems to biology. This first volume is devoted to fundamental aspects and includes a number of important new contributions as well as some review articles that emphasize new development prospects. The second volume contains mostly new applications of the theory of dynamical systems to both engineering and biology. The topics addressed in the two volumes include a rigorous treatment of fluctuations in dynamical systems, topics in fractal analysis, studies of the transient dynamics in biological networks, synchronization in lasers, and control of chaotic systems, among others. This book also: * Presents a rigorous treatment of fluctuations in dynamical systems and explores a range of topics in fractal analysis, among other fundamental topics * Features recent developments on large deviations for higher-dimensional maps, a study of measures resisting multifractal analysis and a overview of complex Kleninan groups * Includes thorough review of recent findings that emphasize new development prospects
This book is the first to present the application of the hybrid system theory to systems with EPCA (equations with piecewise continuous arguments). The hybrid system paradigm is a valuable modeling tool for describing a wide range of real-world applications. Moreover, although new technology has produced, and continues to produce highly hierarchical sophisticated machinery that cannot be analyzed as a whole system, hybrid system representation can be used to reduce the structural complexity of these systems. That is to say, hybrid systems have become a modeling priority, which in turn has led to the creation of a promising research field with several application areas. As such, the book explores recent developments in the area of deterministic and stochastic hybrid systems using the Lyapunov and Razumikhin-Lyapunov methods to investigate the systems' properties. It also describes properties such as stability, stabilization, reliable control, H-infinity optimal control, input-to-state stability (ISS)/stabilization, state estimation, and large-scale singularly perturbed systems.
Simulation based on mathematical models plays a major role in computer aided design of integrated circuits (ICs). Decreasing structure sizes, increasing packing densities and driving frequencies require the use of refined mathematical models, and to take into account secondary, parasitic effects. This leads to very high dimensional problems which nowadays require simulation times too large for the short time-to-market demands in industry. Modern Model Order Reduction (MOR) techniques present a way out of this dilemma in providing surrogate models which keep the main characteristics of the device while requiring a significantly lower simulation time than the full model. With Model Reduction for Circuit Simulation we survey the state of the art in the challenging research field of MOR for ICs, and also address its future research directions. Special emphasis is taken on aspects stemming from miniturisations to the nano scale. Contributions cover complexity reduction using e.g., balanced truncation, Krylov-techniques or POD approaches. For semiconductor applications a focus is on generalising current techniques to differential-algebraic equations, on including design parameters, on preserving stability, and on including nonlinearity by means of piecewise linearisations along solution trajectories (TPWL) and interpolation techniques for nonlinear parts. Furthermore the influence of interconnects and power grids on the physical properties of the device is considered, and also top-down system design approaches in which detailed block descriptions are combined with behavioral models. Further topics consider MOR and the combination of approaches from optimisation and statistics, and the inclusion of PDE models with emphasis on MOR for the resulting partial differential algebraic systems. The methods which currently are being developed have also relevance in other application areas such as mechanical multibody systems, and systems arising in chemistry and to biology. The current number of books in the area of MOR for ICs is very limited, so that this volume helps to fill a gap in providing the state of the art material, and to stimulate further research in this area of MOR. Model Reduction for Circuit Simulation also reflects and documents the vivid interaction between three active research projects in this area, namely the EU-Marie Curie Action ToK project O-MOORE-NICE (members in Belgium, The Netherlands and Germany), the EU-Marie Curie Action RTN-project COMSON (members in The Netherlands, Italy, Germany, and Romania), and the German federal project System reduction in nano-electronics (SyreNe).
Cooperative and relay communications have recently become the most widely explored topics in communications, whereby users cooperate in transmitting their messages to the destination, instead of conventional networks which operate independently and compete among each other for channel resources. As the field has progressed, cooperative communications have become a design concept rather than a specific transmission technology. This concept has revolutionized the design of wireless networks, allowing increased coverage, throughput, and transmission reliability even as conventional transmission techniques gradually reach their limits. Cooperative and relay technologies have also made their way toward next generation wireless standards, such as IEEE802.16 (WiMAX) or LTE, and have been incorporated into many modern wireless applications, such as cognitive radio and secret communications. "Cooperative Communications and Networking: Technologies and System Design" provides a systematic introduction to the fundamental concepts of cooperative communications and relays technology to enable engineers, researchers or graduate students to conduct advanced research and development in this area. "Cooperative Communications and Networking: Technologies and System Design" provides researchers, graduate students, and practical engineers with sufficient knowledge of both the background of cooperative communications and networking, and potential research directions.
This book reveals the underlying mechanisms of complexity and stochastic evolutions of traffic flows. Using Eulerian and Lagrangian measurements, the authors propose lognormal headway/spacing/velocity distributions and subsequently develop a Markov car-following model to describe drivers' random choices concerning headways/spacings, putting forward a stochastic fundamental diagram model for wide scattering flow-density points. In the context of highway onramp bottlenecks, the authors present a traffic flow breakdown probability model and spatial-temporal queuing model to improve the stability and reliability of road traffic flows. This book is intended for researchers and graduate students in the fields of transportation engineering and civil engineering.
This book is an introduction to the mathematical theory of design for articulated mechanical systems known as linkages. The focus is on sizing mechanical constraints that guide the movement of a work piece, or end-effector, of the system. The function of the device is prescribed as a set of positions to be reachable by the end-effector; and the mechanical constraints are formed by joints that limit relative movement. The goal is to find all the devices that can achieve a specific task. Formulated in this way the design problem is purely geometric in character. Robot manipulators, walking machines, and mechanical hands are examples of articulated mechanical systems that rely on simple mechanical constraints to provide a complex workspace for the end- effector. The principles presented in this book form the foundation for a design theory for these devices. The emphasis, however, is on articulated systems with fewer degrees of freedom than that of the typical robotic system, and therefore, less complexity. This book will be useful to mathematics, engineering and computer science departments teaching courses on mathematical modeling of robotics and other articulated mechanical systems. This new edition includes research results of the past decade on the synthesis of multi loop planar and spherical linkages, and the use of homotopy methods and Clifford algebras in the synthesis of spatial serial chains. One new chapter on the synthesis of spatial serial chains introduces numerical homotopy and the linear product decomposition of polynomial systems. The second new chapter introduces the Clifford algebra formulation of the kinematics equations of serial chain robots. Examples are use throughout to demonstrate the theory."
This book presents up-to-date results on abstract evolution equations and differential inclusions in infinite dimensional spaces. It covers equations with time delay and with impulses, and complements the existing literature in functional differential equations and inclusions. The exposition is devoted to both local and global mild solutions for some classes of functional differential evolution equations and inclusions, and other densely and non-densely defined functional differential equations and inclusions in separable Banach spaces or in Frechet spaces. The tools used include classical fixed points theorems and the measure-of non-compactness, and each chapter concludes with a section devoted to notes and bibliographical remarks. This monograph is particularly useful for researchers and graduate students studying pure and applied mathematics, engineering, biology and all other applied sciences.
This thesis proposes a novel Model Predictive Control (MPC) strategy, which modifies the usual MPC cost function in order to achieve a desirable sparse actuation. It features an 1-regularised least squares loss function, in which the control error variance competes with the sum of input channels magnitude (or slew rate) over the whole horizon length. While standard control techniques lead to continuous movements of all actuators, this approach enables a selected subset of actuators to be used, the others being brought into play in exceptional circumstances. The same approach can also be used to obtain asynchronous actuator interventions, so that control actions are only taken in response to large disturbances. This thesis presents a straightforward and systematic approach to achieving these practical properties, which are ignored by mainstream control theory.
Analysis of information transfer has found rapid adoption in neuroscience, where a highly dynamic transfer of information continuously runs on top of the brain's slowly-changing anatomical connectivity. Measuring such transfer is crucial to understanding how flexible information routing and processing give rise to higher cognitive function. "Directed Information Measures in Neuroscience" reviews recent developments of concepts and tools for measuring information transfer, their application to neurophysiological recordings and analysis of interactions. Written by the most active researchers in the field the book discusses the state of the art, future prospects and challenges on the way to an efficient assessment of neuronal information transfer. Highlights include the theoretical quantification and practical estimation of information transfer, description of transfer locally in space and time, multivariate directed measures, information decomposition among a set of stimulus/responses variables and the relation between interventional and observational causality. Applications to neural data sets and pointers to open source software highlight the usefulness of these measures in experimental neuroscience. With state-of-the-art mathematical developments, computational techniques and applications to real data sets, this book will be of benefit to all graduate students and researchers interested in detecting and understanding the information transfer between components of complex systems.
This authored monograph presents a study on fundamental limits and robustness of stability and stabilization of time-delay systems, with an emphasis on time-varying delay, robust stabilization, and newly emerged areas such as networked control and multi-agent systems. The authors systematically develop an operator-theoretic approach that departs from both the traditional algebraic approach and the currently pervasive LMI solution methods. This approach is built on the classical small-gain theorem, which enables the author to draw upon powerful tools and techniques from robust control theory. The book contains motivating examples and presents mathematical key facts that are required in the subsequent sections. The target audience primarily comprises researchers and professionals in the field of control theory, but the book may also be beneficial for graduate students alike.
This book on road traffic congestion in cities and suburbs describes congestion problems and shows how they can be relieved. The first part (Chapters 1 - 3) shows how congestion reflects transportation technologies and settlement patterns. The second part (Chapters 4 - 13) describes the causes, characteristics, and consequences of congestion. The third part (Chapters 14 - 23) presents various relief strategies - including supply adaptation and demand mitigation - for nonrecurring and recurring congestion. The last part (Chapter 24) gives general guidelines for congestion relief and provides a general outlook for the future. The book will be useful for a wide audience - including students, practitioners and researchers in a variety of professional endeavors: traffic engineers, transportation planners, public transport specialists, city planners, public administrators, and private enterprises that depend on transportation for their activities.
This monograph presents the state of the art in aeroservoelastic (ASE) modeling and analysis and develops a systematic theoretical and computational framework for use by researchers and practicing engineers. It is the first book to focus on the mathematical modeling of structural dynamics, unsteady aerodynamics, and control systems to evolve a generic procedure to be applied for ASE synthesis. Existing robust, nonlinear, and adaptive control methodology is applied and extended to some interesting ASE problems, such as transonic flutter and buffet, post-stall buffet and maneuvers, and flapping flexible wing. The author derives a general aeroservoelastic plant via the finite-element structural dynamic model, unsteady aerodynamic models for various regimes in the frequency domain, and the associated state-space model by rational function approximations. For more advanced models, the full-potential, Euler, and Navier-Stokes methods for treating transonic and separated flows are also briefly addressed. Essential ASE controller design and analysis techniques are introduced to the reader, and an introduction to robust control-law design methods of LQG/LTR and H2/H synthesis is followed by a brief coverage of nonlinear control techniques of describing functions and Lyapunov functions. Practical and realistic aeroservoelastic application examples derived from actual experiments are included throughout. Aeroservoelasiticity fills an important gap in the aerospace engineering literature and will be a valuable guide for graduate students and advanced researchers in aerospace engineering, as well as professional engineers, technicians, and test pilots in the aircraft industry and laboratories.
This book introduces a unique, packet-based co-design control framework for networked control systems. It begins by providing a comprehensive survey of state-of-the-art research on networked control systems, giving readers a general overview of the field. It then verifies the proposed control framework both theoretically and experimentally - the former using multiple control methodologies, and the latter using a unique online test rig for networked control systems. The framework investigates in detail the most common, communication constraints, including network-induced delays, data packet dropout, data packet disorders, and network access constraints, as well as multiple controller design and system analysis tools such as model predictive control, linear matrix inequalities and optimal control. This unique and complete co-design framework greatly benefits researchers, graduate students and engineers in the fields of control theory and engineering.
This monograph presents key method to successfully manage the growing complexity of systems where conventional engineering and scientific methodologies and technologies based on learning and adaptability come to their limits and new ways are nowadays required. The transition from adaptable to evolvable and finally to self-evolvable systems is highlighted, self-properties such as self-organization, self-configuration, and self-repairing are introduced and challenges and limitations of the self-evolvable engineering systems are evaluated."
"Noise-Driven Phenomena in Hysteretic Systems" provides a general approach to nonlinear systems with hysteresis driven by noisy inputs, which leads to a unitary framework for the analysis of various stochastic aspects of hysteresis. This book includes integral, differential and algebraic models that are used to describe scalar and vector hysteretic nonlinearities originating from various areas of science and engineering. The universality of the authors approach is also reflected by the diversity of the models used to portray the input noise, from the classical Gaussian white noise to its impulsive forms, often encountered in economics and biological systems, and pink noise, ubiquitous in multi-stable electronic systems. The book is accompanied by HysterSoft(c) - a robust simulation environment designed to perform complex hysteresis modeling that can be used by the reader to reproduce many of the results presented in the book as well as to research both disruptive and constructive effects of noise in hysteretic systems."
Our understanding of information and information dynamics has outgrown classical information theory. The theory does not account for the value or influence of information within the context of a system or network and does not explain how these properties might influence how information flows though and interacts with a system. The invited chapters in this collection present new theories, methods, and applications that address some of these limitations. Dynamics of Information Systems presents state-of-the-art research explaining the importance of information in the evolution of a distributed or networked system. This book presents techniques for measuring the value or significance of information within the context of a system. Each chapter reveals a unique topic or perspective from experts in this exciting area of research. These newly developed techniques have numerous applications including: the detection of terrorist networks, the design of highly functioning businesses and computer systems, modeling the distributed sensory and control physiology of animals, quantum entanglement and genome modeling, multi-robotic systems design, as well as industrial and manufacturing safety.
Stochastic Optimal Control (SOC)-a mathematical theory concerned with minimizing a cost (or maximizing a payout) pertaining to a controlled dynamic processunder uncertainty-has proven incredibly helpful to understanding and predicting debt crises and evaluating proposed financial regulation and risk management."Stochastic Optimal Control and the U.S. Financial Debt Crisis"analyzes SOC in relation to the 2008 U.S. financial crisis, and offers a detailed framework depicting why such a methodology is best suited for reducing financial risk and addressing key regulatory issues. Topics discussed include the inadequacies of the current approaches underlying financial regulations, the use of SOC to explain debt crises and superiority over existing approaches to regulation, and the domestic and international applications of SOC to financial crises. Principles in this book will appeal to economists, mathematicians, and researchers interested in the U.S. financial debt crisis and optimal risk management."
In this monograph, we combine operator techniques with state space methods to solve factorization, spectral estimation, and interpolation problems arising in control and signal processing. We present both the theory and algorithms with some Matlab code to solve these problems. A classical approach to spectral factorization problems in control theory is based on Riccati equations arising in linear quadratic control theory and Kalman ?ltering. One advantage of this approach is that it readily leads to algorithms in the non-degenerate case. On the other hand, this approach does not easily generalize to the nonrational case, and it is not always transparent where the Riccati equations are coming from. Operator theory has developed some elegant methods to prove the existence of a solution to some of these factorization and spectral estimation problems in a very general setting. However, these techniques are in general not used to develop computational algorithms. In this monograph, we will use operator theory with state space methods to derive computational methods to solve factorization, sp- tral estimation, and interpolation problems. It is emphasized that our approach is geometric and the algorithms are obtained as a special application of the theory. We will present two methods for spectral factorization. One method derives al- rithms based on ?nite sections of a certain Toeplitz matrix. The other approach uses operator theory to develop the Riccati factorization method. Finally, we use isometric extension techniques to solve some interpolation problems.
Holistic Engineering Education: Beyond Technology is a compilation of coordinated and focused essays from world leaders in the engineering profession who are dedicated to a transformation of engineering education and practice. The contributors define a new and holistic approach to education and practice that captures the creativity, interdisciplinarity, complexity, and adaptability required for the profession to grow and truly serve global needs. With few exceptions today, engineering students and professionals continue to receive a traditional, technically-based education and training using curriculum models developed for early 20th century manufacturing and machining. While this educational paradigm has served engineering well, helping engineers create awe-inspiring machines and technologies for society, the coursework and expectations of most engineering programs eschew breadth and intellectual exploration to focus on consistent technological precision and study. Why this dichotomy? While engineering will always need precise technological skill, the 21st century innovation economy demands a new professional perspective that recognizes the value of complex systems thinking, cross-disciplinary collaborations, economic and environmental impacts (sustainability), and effective communication to global and community leaders, thus enabling engineers to consider "the whole patient" of society's needs. The goal of this book is to inspire, lead, and guide this critically needed transformation of engineering education. "Holistic Engineering Education: Beyond Technology points the way to a transformation of engineering education and practice that will be sufficiently robust, flexible, and systems-oriented to meet the grand challenges of the 21st century with their ever-increasing scale, complexity, and transdisciplinary nature." -- Charles Vest, President, National Academy of Engineering;
President Emeritus, MIT -- Linda Katehi, Chancellor, University of California at Davis "This superb volume offers a provocative portrait of the exciting future of engineering education A dramatically new form of engineering education is needed that recognizes this field as a liberal art, as a profession that combines equal parts technical rigor and creative design The authors challenge the next generation to engineering educators to imagine, think and act in new ways. " -- Lee S. Shulman, President Emeritus, The Carnegie Foundation for the Advancement of Teaching and Charles E. Ducommun Professor of Education Emeritus, Stanford University"
Organizations of all kinds struggle to understand, adapt, respond and manipulate changing conditions in their internal and external environments. Approaches based on the causal, linear logic of mechanistic sciences and engineering continue to play an important role, given people's ability to create order. But such approaches are valid only within carefully circumscribed boundaries. They become counterproductive when the same organizations display the highly reflexive, context-dependent, dynamic nature of systems in which agents learn and adapt and new patterns emerge. The rapidly expanding discussion about complex systems offers important contributions to the integration of diverse perspectives and ultimately new insights into organizational effectiveness. There is increasing interest in complexity in mainstream business education, as well as in specialist business disciplines such as knowledge management. Real world systems can't be completely designed, controlled, understood or predicted, even by the so-called sciences of complexity, but they can be more effective when understood as complex systems. While many scientific disciplines explore complexity principally through abstract mathematical models and simulations, Emergence: Complexity & Organization explores the emerging understanding of human systems from both the 'hard' quantitative sciences and the 'soft' qualitative perspectives. This 2008 Annual includes articles from Stephen J. Guastello, Ken Baskin, Mihnea Moldoveanu, Frank Boons, Duncan A. Robertson, Brenda L. Massetti, Maria May Seitanidi, Mary Lee Rhodes and many more, which explore a range of complexity-related topics from philosophical concerns through to the practical application of complexity ideas, concepts and frameworks in human organizations. Also included are a series of four reproductions of classical papers in the fields of complexity and systems, each with critical introductions that explore their modern relevance: "The Meanings of 'Emergence' and Its Modes" by Arthur O. Lovejoy (originally published in 1927) "An Outline of General System Theory" by Ludwig von Bertalanffy (originally published in 1950) "Society as a Complex Adaptive System" by Walter Buckley (originally published in 1968) "Is Adaptability Enough?" by Geoffrey Vickers (originally published in 1959)
This book presents up-to-date research and novel methodologies on fault diagnosis and fault tolerant control for switched linear systems. It provides a unified yet neat framework of filtering, fault detection, fault diagnosis and fault tolerant control of switched systems. It can therefore serve as a useful textbook for senior and/or graduate students who are interested in knowing the state-of-the-art of filtering, fault detection, fault diagnosis and fault tolerant control areas, as well as recent advances in switched linear systems. |
You may like...
Herbarium: Gift Wrapping Paper Book - 10…
Caz Hildebrand
Miscellaneous printed matter
Tanaman Herbal Dan Buah Yang Berkhasiat…
Jannah Firdaus Mediapro
Hardcover
The Art of Herbal Healing - A Guide to…
Susan Clearwater
Hardcover
|