![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Reference & Interdisciplinary > Communication studies > Information theory
This book examines some issues involving climate change, human trafficking, and other serious world challenges made worse by climate change. Climate change increases the risk of natural disasters and thus creates poverty and can cause situations of conflict and instability. Displacement can occur giving traffickers an opportunity to exploit affected people. In the fuzzy graph theory part of the book, the relatively new concepts of fuzzy soft semigraphs and graph structures are used to study human trafficking, as well as its time intuitionistic fuzzy sets that have been introduced to model forest fires. The notion of legal and illegal incidence strength is used to analyze immigration to the USA. The examination of return refugees to their origin countries is undertaken. The neighborhood connectivity index is determined for trafficking in various regions in the world. The cycle connectivity measure for the directed graph of the flow from South America to the USA is calculated. It is determined that there is a need for improvement in government response by countries. Outside the area of fuzzy graph theory, a new approach to examine climate change is introduced. Social network theory is used to study feedback processes that effect climate forcing. Tipping points in climate change are considered. The relationship between terrorism and climate change is examined. Ethical issues concerning the obligation of business organizations to reduce carbon emissions are also considered. Nonstandard analysis is a possible new area that could be used by scholars of mathematics of uncertainty. A foundation is laid to aid the researcher in the understanding of nonstandard analysis. In order to accomplish this, a discussion of some basic concepts from first-order logic is presented as some concepts of mathematics of uncertainty. An application to the theory of relativity is presented.
Stabilization of Navier Stokes Flows presents recent notable progress in the mathematical theory of stabilization of Newtonian fluid flows. Finite-dimensional feedback controllers are used to stabilize exponentially the equilibrium solutions of Navier Stokes equations, reducing or eliminating turbulence. Stochastic stabilization and robustness of stabilizable feedback are also discussed. The analysis developed here provides a rigorous pattern for the design of efficient stabilizable feedback controllers to meet the needs of practical problems and the conceptual controllers actually detailed will render the reader 's task of application easier still.Stabilization of Navier Stokes Flows avoids the tedious and technical details often present in mathematical treatments of control and Navier Stokes equations and will appeal to a sizeable audience of researchers and graduate students interested in the mathematics of flow and turbulence control and in Navier-Stokes equations in particular.
This is the first full-length study about the British artist Roy Ascott, one of the first cybernetic artists, with a career spanning seven decades to date. The book focuses on his early career, exploring the evolution of his early interests in communication in the context of the rich overlaps between art, science and engineering in Britain during the 1950s and 1960s. The first part of the book looks at Ascott's training and early work. The second park looks solely at Groundcourse, Ascott's extraordinary pedagogical model for visual arts and cybernetics which used an integrative and systems-based model, drawing in behaviourism, analogue machines, performance and games. Using hitherto unpublished photographs and documents, this book will establish a more prominent place for cybernetics in post-war British art.
This book reports on the state of the art in the field of multiphysics systems. It consists of accurately reviewed contributions to the MMSSD'2014 conference, which was held from December 17 to 19, 2004 in Hammamet, Tunisia. The different chapters, covering new theories, methods and a number of case studies, provide readers with an up-to-date picture of multiphysics modeling and simulation. They highlight the role played by high-performance computing and newly available software in promoting the study of multiphysics coupling effects, and show how these technologies can be practically implemented to bring about significant improvements in the field of design, control and monitoring of machines. In addition to providing a detailed description of the methods and their applications, the book also identifies new research issues, challenges and opportunities, thus providing researchers and practitioners with both technical information to support their daily work and a new source of inspiration for their future research.
As economic activity has become more information-intensive and ideas about the information society have been canvassed widely, information technology has overshadowed thinking about the role of communication and information. In the advanced economies investment in information-handling equipment has grown rapidly in importance and almost throughout the world telecommunications facilities are advocated as the leading edge of development.This wide-ranging collection charts the responses of the economics discipline to these changes, initially slowly but with gathering pace, as communication and information have moved from the sidelines to centre stage. This book will be an indispensible reference source by all those in the economics community, those interested in information science, library studies and communication.
This book provides comprehensive coverage on a new direction in computational mathematics research: automatic search for formulas. Formulas must be sought in all areas of science and life: these are the laws of the universe, the macro and micro world, fundamental physics, engineering, weather and natural disasters forecasting; the search for new laws in economics, politics, sociology. Accumulating many years of experience in the development and application of numerical methods of symbolic regression to solving control problems, the authors offer new possibilities not only in the field of control automation, but also in the design of completely different optimal structures in many fields. For specialists in the field of control, Machine Learning Control by Symbolic Regression opens up a new promising direction of research and acquaints scientists with the methods of automatic construction of control systems.For specialists in the field of machine learning, the book opens up a new, much broader direction than neural networks: methods of symbolic regression. This book makes it easy to master this new area in machine learning and apply this approach everywhere neural networks are used. For mathematicians, the book opens up a new approach to the construction of numerical methods for obtaining analytical solutions to unsolvable problems; for example, numerical analytical solutions of algebraic equations, differential equations, non-trivial integrals, etc. For specialists in the field of artificial intelligence, the book offers a machine way to solve problems, framed in the form of analytical relationships.
This book addresses the realization problem of positive and fractional continuous-time and discrete-time linear systems. Roughly speaking the essence of the realization problem can be stated as follows: Find the matrices of the state space equations of linear systems for given their transfer matrices. This first book on this topic shows how many well-known classical approaches have been extended to the new classes of positive and fractional linear systems. The modified Gilbert method for multi-input multi-output linear systems, the method for determination of realizations in the controller canonical forms and in observer canonical forms are presented. The realization problem for linear systems described by differential operators, the realization problem in the Weierstrass canonical forms and of the descriptor linear systems for given Markov parameters are addressed. The book also presents a method for the determination of minimal realizations of descriptor linear systems and an extension for cone linear systems. This monographs summarizes recent original investigations of the authors in the new field of the positive and fractional linear systems.
Interpersonal relationships are the core of our societal system and
have been since before the dawn of civilization. In today's world,
friends, lovers, companions, and confidants make valuable
contributions to our everyday lives. These are the relationships
whose members are not automatically participants as a result of
their birth and kin affiliations. The focus is on these
relationships that must be forged from the sometimes indifferent,
and sometimes hostile world. Yet, there is still much that is not
known about how these relationships evolve, how partners
communicate in on-going relationships, how people keep their
relationships together, and how they cope when they fall apart.
Primary to the focus of this book is the underlying theme of
evolving interpersonal relationships from the initial encounter to
the mature alliance.
The aim of this book is to furnish the reader with a rigorous and detailed exposition of the concept of control parametrization and time scaling transformation. It presents computational solution techniques for a special class of constrained optimal control problems as well as applications to some practical examples. The book may be considered an extension of the 1991 monograph A Unified Computational Approach Optimal Control Problems, by K.L. Teo, C.J. Goh, and K.H. Wong. This publication discusses the development of new theory and computational methods for solving various optimal control problems numerically and in a unified fashion. To keep the book accessible and uniform, it includes those results developed by the authors, their students, and their past and present collaborators. A brief review of methods that are not covered in this exposition, is also included. Knowledge gained from this book may inspire advancement of new techniques to solve complex problems that arise in the future. This book is intended as reference for researchers in mathematics, engineering, and other sciences, graduate students and practitioners who apply optimal control methods in their work. It may be appropriate reading material for a graduate level seminar or as a text for a course in optimal control.
In the context of life sciences, we are constantly confronted with information that possesses precise semantic values and appears essentially immersed in a specific evolutionary trend. In such a framework, Nature appears, in Monod's words, as a tinkerer characterized by the presence of precise principles of self-organization. However, while Monod was obliged to incorporate his brilliant intuitions into the framework of first-order cybernetics and a theory of information with an exclusively syntactic character such as that defined by Shannon, research advances in recent decades have led not only to the definition of a second-order cybernetics but also to an exploration of the boundaries of semantic information. As H. Atlan states, on a biological level "the function self-organizes together with its meaning". Hence the need to refer to a conceptual theory of complexity and to a theory of self-organization characterized in an intentional sense. There is also a need to introduce, at the genetic level, a distinction between coder and ruler as well as the opportunity to define a real software space for natural evolution. The recourse to non-standard model theory, the opening to a new general semantics, and the innovative definition of the relationship between coder and ruler can be considered, today, among the most powerful theoretical tools at our disposal in order to correctly define the contours of that new conceptual revolution increasingly referred to as metabiology. This book focuses on identifying and investigating the role played by these particular theoretical tools in the development of this new scientific paradigm. Nature "speaks" by means of mathematical forms: we can observe these forms, but they are, at the same time, inside us as they populate our organs of cognition. In this context, the volume highlights how metabiology appears primarily to refer to the growth itself of our instruments of participatory knowledge of the world.
This volume consists of selected essays by participants of the workshop Control at Large Scales: Energy Markets and Responsive Grids held at the Institute for Mathematics and its Applications, Minneapolis, Minnesota, U.S.A. from May 9-13, 2016. The workshop brought together a diverse group of experts to discuss current and future challenges in energy markets and controls, along with potential solutions. The volume includes chapters on significant challenges in the design of markets and incentives, integration of renewable energy and energy storage, risk management and resilience, and distributed and multi-scale optimization and control. Contributors include leading experts from academia and industry in power systems and markets as well as control science and engineering. This volume will be of use to experts and newcomers interested in all aspects of the challenges facing the creation of a more sustainable electricity infrastructure, in areas such as distributed and stochastic optimization and control, stability theory, economics, policy, and financial mathematics, as well as in all aspects of power system operation.
The book is a collection of peer-reviewed scientific papers submitted by active researchers in the 36th National System Conference (NSC 2012). NSC is an annual event of the Systems Society of India (SSI), primarily oriented to strengthen the systems movement and its applications for the welfare of humanity. A galaxy of academicians, professionals, scientists, statesman and researchers from different parts of the country and abroad are invited to attend the Conference. The book presents various research articles in the area of system modelling in all disciplines of engineering sciences as well as socio-economic systems. The book can be used as a tool for further research.
Regulation of the Power Sector is a unified, consistent and comprehensive treatment of the theories and practicalities of regulation in modern power-supply systems. The need for generation to occur at the time of use occasioned by the impracticality of large-scale electricity storage coupled with constant and often unpredictable changes in demand make electricity-supply systems large, dynamic and complex and their regulation a daunting task. Arranged in four parts, this book addresses both traditional regulatory frameworks and also liberalized and re-regulated environments. First, an introduction gives a full characterization of power supply including engineering, economic and regulatory viewpoints. The second part presents the fundamentals of regulation and the third looks at the regulation of particular components of the power sector in detail. Advanced topics and subjects still open or subject to dispute form the content of Part IV. In a sector where regulatory design is the key driver of both the industry efficiency and the returns on investment, Regulation of the Power Sector is directed at regulators, policy decision makers, business managers and researchers. It is a pragmatic text, well-tested by the authors' quarter-century of experience of power systems from around the world. Power system professionals and students at all levels will derive much benefit from the authors' wealth of blended theory and real-world-derived know-how.
With the advent of the National Curriculum, computer based modelling CBM is now a compulsory part of the school curriculum. Teachers are increasingly being encouraged to seek out opportunities for CBM in their own subject and across the curriculum. The new demands on the curriculum have left eachers and teacher trainers concerned as to their lack of experience in the area. This book sets out to provide a comprehensive guide to the area through an examination of a number of funded projects on CBM and their application to the school curriculum, setting them in the context of wider theoretical and practical concerns. It is acknowledged that computers bring about change in the classroom, both in teachers' professional development and innovative practices in teaching and learning. In highlighting how CBM can aid in the effective delivery of the curriculum, this book should be essential reading for teachers and researchers in the field.
Revised and updated, this concise new edition of the pioneering book on multidimensional signal processing is ideal for a new generation of students. Multidimensional systems or m-D systems are the necessary mathematical background for modern digital image processing with applications in biomedicine, X-ray technology and satellite communications. Serving as a firm basis for graduate engineering students and researchers seeking applications in mathematical theories, this edition eschews detailed mathematical theory not useful to students. Presentation of the theory has been revised to make it more readable for students, and introduce some new topics that are emerging as multidimensional DSP topics in the interdisciplinary fields of image processing. New topics include Groebner bases, wavelets, and filter banks.
"Impulsive Control in Continuous and Discrete-Continuous Systems" is an up-to-date introduction to the theory of impulsive control in nonlinear systems. This is a new branch of the Optimal Control Theory, which is tightly connected to the Theory of Hybrid Systems. The text introduces the reader to the interesting area of optimal control problems with discontinuous solutions, discussing the application of a new and effective method of discontinuous time-transformation. With a large number of examples, illustrations, and applied problems arising in the area of observation control, this book is excellent as a textbook or reference for a senior or graduate-level course on the subject, as well as a reference for researchers in related fields.
How can we interpret cyberspace? What is the place of the embodied human agent in the virtual world? This innovative collection explores the emerging arena of cyberspace and the challenges it presents for the social and cultural forms of the human body. Cyberspace/Cyberbodies/Cyberpunk shows how changing relationships between body and technology offer new arenas for cultural representations. At the same time, the contributors consider the realities of human embodiment and the limits of virtual worlds. Topics examined include technological body modifications, replacements and prosthetics, bodies in cyberspace, virtual environments and cyborg culture, cultural representations of technological embodiment in visual and literary productions, and cyberpunk science fiction as a prefigurative social and cultural theory. Academics and students in cultural studies, popular culture, communication, sociology of culture, philosophy will appreciate this intriguing volume, as will general readers with an interest in the Internet.
This book introduces a comprehensive and mathematically rigorous controller design for families of nonlinear systems with time-varying parameters and unstructured uncertainties. Although the presented methodology is general, the specific family of systems considered is the latest, NextGen, unconventional fixed-wing unmanned aircraft with circulation control or morphing wings, or a combination of both. The approach considers various sources of model and parameter uncertainty, while the controller design depends not on a nominal plant model, but instead on a family of admissible plants. In contrast to existing controller designs that consider multiple models and multiple controllers, the proposed approach is based on the 'one controller fits all models' within the unstructured uncertainty interval. The book presents a modeling-based analysis and synthesis approach with additive uncertainty weighting functions for accurate realization of the candidate systems. This differs significantly from existing designs in that it is capable of handling time-varying characteristics. This research monograph is suitable for scientists, engineers, researchers and graduate students with a background in control system theory who are interested in complex engineering nonlinear systems.
This book compiles recent developments on sliding mode control theory and its applications. Each chapter presented in the book proposes new dimension in the sliding mode control theory such as higher order sliding mode control, event triggered sliding mode control, networked control, higher order discrete-time sliding mode control and sliding mode control for multi-agent systems. Special emphasis has been given to practical solutions to design involving new types of sliding mode control. This book is a reference guide for graduate students and researchers working in the domain for designing sliding mode controllers. The book is also useful to professional engineers working in the field to design robust controllers for various applications.
Complexity theories gained prominence in the 1990s with a focus on self-organising and complex adaptive systems. Since then, complexity theory has become one of the fastest growing topics in both the natural and social sciences, and touted as a revolutionary way of understanding the behaviour of complex systems. This book uses complexity theory to surface and challenge the deeply held cultural assumptions that shape how we think about reality and knowledge. In doing so it shows how our traditional approaches to generating and applying knowledge may be paradoxically exacerbating some of the 'wicked' environmental problems we are currently facing. The author proposes an innovative and compelling argument for rejecting old constructs of knowledge transfer, adaptive management and adaptive capacity. The book also presents a distinctively coherent and comprehensive synthesis of cognition, learning, knowledge and organizing from a complexity perspective. It concludes with a reconceptualization of the problem of knowledge transfer from a complexity perspective, proposing the concept of creative capacity as an alternative to adaptive capacity as a measure of resilience in socio-ecological systems. Although written from an environmental management perspective, it is relevant to the broader natural sciences and to a range of other disciplines, including knowledge management, organizational learning, organizational management, and the philosophy of science.
The book gives an introduction to networked control systems and describes new modeling paradigms, analysis methods for event-driven, digitally networked systems, and design methods for distributed estimation and control. Networked model predictive control is developed as a means to tolerate time delays and packet loss brought about by the communication network. In event-based control the traditional periodic sampling is replaced by state-dependent triggering schemes. Novel methods for multi-agent systems ensure complete or clustered synchrony of agents with identical or with individual dynamics. The book includes numerous references to the most recent literature. Many methods are illustrated by numerical examples or experimental results.
This book highlights current research into virtual tutoring software and presents a case study of the design and application of a social tutor for children with autism. Best practice guidelines for developing software-based educational interventions are discussed, with a major emphasis on facilitating the generalisation of skills to contexts outside of the software itself, and on maintaining these skills over time. Further, the book presents the software solution Thinking Head Whiteboard, which provides a framework for families and educators to create unique educational activities utilising virtual character technology and customised to match learners' needs and interests. In turn, the book describes the development and evaluation of a social tutor incorporating multiple life-like virtual humans, leading to an exploration of the lessons learned and recommendations for the future development of related technologies.
Big Data and Information Theory are a binding force between various areas of knowledge that allow for societal advancement. Rapid development of data analytic and information theory allows companies to store vast amounts of information about production, inventory, service, and consumer activities. More powerful CPUs and cloud computing make it possible to do complex optimization instead of using heuristic algorithms, as well as instant rather than offline decision-making. The era of "big data" challenges includes analysis, capture, curation, search, sharing, storage, transfer, visualization, and privacy violations. Big data calls for better integration of optimization, statistics, and data mining. In response to these challenges this book brings together leading researchers and engineers to exchange and share their experiences and research results about big data and information theory applications in various areas. This book covers a broad range of topics including statistics, data mining, data warehouse implementation, engineering management in large-scale infrastructure systems, data-driven sustainable supply chain network, information technology service offshoring project issues, online rumors governance, preliminary cost estimation, and information system project selection. The chapters in this book were originally published in the journal, International Journal of Management Science and Engineering Management.
Geometrical Dynamics of Complex Systems is a graduate-level monographic textbook. Itrepresentsacomprehensiveintroductionintorigorousgeometrical dynamicsofcomplexsystemsofvariousnatures. By'complexsystems', inthis book are meant high-dimensional nonlinear systems, which can be (but not necessarily are) adaptive. This monograph proposes a uni?ed geometrical - proachtodynamicsofcomplexsystemsofvariouskinds: engineering, physical, biophysical, psychophysical, sociophysical, econophysical, etc. As their names suggest, all these multi-input multi-output (MIMO) systems have something in common: the underlying physics. However, instead of dealing with the pop- 1 ular 'soft complexity philosophy', we rather propose a rigorous geometrical and topological approach. We believe that our rigorous approach has much greater predictive power than the soft one. We argue that science and te- nology is all about prediction and control. Observation, understanding and explanation are important in education at undergraduate level, but after that it should be all prediction and control. The main objective of this book is to show that high-dimensional nonlinear systems and processes of 'real life' can be modelled and analyzed using rigorous mathematics, which enables their complete predictability and controllability, as if they were linear systems. It is well-known that linear systems, which are completely predictable and controllable by de?nition - live only in Euclidean spaces (of various - mensions). They are as simple as possible, mathematically elegant and fully elaborated from either scienti?c or engineering side. However, in nature, no- ing is linear. In reality, everything has a certain degree of nonlinearity, which means: unpredictability, with subsequent uncontrollability.
Gathering the proceedings of the 12th CHAOS2019 International Conference, this book highlights recent developments in nonlinear, dynamical and complex systems. The conference was intended to provide an essential forum for Scientists and Engineers to exchange ideas, methods, and techniques in the field of Nonlinear Dynamics, Chaos, Fractals and their applications in General Science and the Engineering Sciences. The respective chapters address key methods, empirical data and computer techniques, as well as major theoretical advances in the applied nonlinear field. Beyond showcasing the state of the art, the book will help academic and industrial researchers alike apply chaotic theory in their studies. |
You may like...
Nonparametric Statistics - 2nd ISNPS…
Ricardo Cao, Wenceslao Gonzalez-Manteiga, …
Hardcover
R4,623
Discovery Miles 46 230
Quantitative statistical techniques
Swanepoel Swanepoel, Vivier Vivier, …
Paperback
(2)R718 Discovery Miles 7 180
Discovering Computers 2018 - Digital…
Misty Vermaat, Steven Freund, …
Paperback
|