![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Reference & Interdisciplinary > Communication studies > Information theory
This is a book about creating information systems within firms that will truly give managers the information they need to make informed business decisions. The author contends that information is part of an ecological system in which it undergoes a process of evolution and adaptation to the requirements of the local users. The book explains ecological planning tools that guide managers to develop information systems to meet their changing needs.
This work addresses the notion of compression ratios greater than what has been known for random sequential strings in binary and larger radix-based systems as applied to those traditionally found in Kolmogorov complexity. A culmination of the author's decade-long research that began with his discovery of a compressible random sequential string, the book maintains a theoretical-statistical level of introduction suitable for mathematical physicists. It discusses the application of ternary-, quaternary-, and quinary-based systems in statistical communication theory, computing, and physics.
This book presents few novel Discrete-time Sliding Mode (DSM) protocols for leader-following consensus of Discrete Multi-Agent Systems (DMASs). The protocols intend to achieve the consensus in finite time steps and also tackle the corresponding uncertainties. Based on the communication graph topology of multi-agent systems, the protocols are divided into two groups, namely (i) Fixed graph topology and (ii) Switching graph topology. The coverage begins with the design of Discrete-time Sliding Mode (DSM) protocols using Gao's reaching law and power rate reaching law for the synchronization of linear DMASs by using the exchange of information between the agents and the leader to achieve a common goal. Then, in a subsequent chapter, analysis for no. of fixed-time steps required for the leader-following consensus is presented. The book also includes chapters on the design of Discrete-time Higher-order Sliding Mode (DHSM) protocols, Event-triggered DSM protocols for the leader-following consensus of DMASs. A chapter is also included on the design of DHSM protocols for leader-following consensus of heterogeneous DMASs. Special emphasis is given to the practical implementation of each proposed DSM protocol for achieving leader-following consensus of helicopter systems, flexible joint robotic arms, and rigid joint robotic arms. This book offers a ready reference guide for graduate students and researchers working in the areas of control, automation, and communication engineering, and in particular the cooperative control of multi-agent systems. It will also benefit professional engineers working to design and implement robust controllers for power systems, autonomous vehicles, military surveillance, smartgrids/microgrids, vehicle traffic management, robotic teams, and aerial robots.
This monograph is an up-to-date presentation of the analysis and design of singular Markovian jump systems (SMJSs) in which the transition rate matrix of the underlying systems is generally uncertain, partially unknown and designed. The problems addressed include stability, stabilization, H control and filtering, observer design, and adaptive control. applications of Markov process are investigated by using Lyapunov theory, linear matrix inequalities (LMIs), S-procedure and the stochastic Barbalat's Lemma, among other techniques. Features of the book include: * study of the stability problem for SMJSs with general transition rate matrices (TRMs); * stabilization for SMJSs by TRM design, noise control, proportional-derivative and partially mode-dependent control, in terms of LMIs with and without equation constraints; * mode-dependent and mode-independent H control solutions with development of a type of disordered controller; * observer-based controllers of SMJSs in which both the designed observer and controller are either mode-dependent or mode-independent; * consideration of robust H filtering in terms of uncertain TRM or filter parameters leading to a method for totally mode-independent filtering * development of LMI-based conditions for a class of adaptive state feedback controllers with almost-certainly-bounded estimated error and almost-certainly-asymptotically-stable corres ponding closed-loop system states * applications of Markov process on singular systems with norm bounded uncertainties and time-varying delays Analysis and Design of Singular Markovian Jump Systems contains valuable reference material for academic researchers wishing to explore the area. The contents are also suitable for a one-semester graduate course.
In this monograph the authors develop a theory for the robust control of discrete-time stochastic systems, subjected to both independent random perturbations and to Markov chains. Such systems are widely used to provide mathematical models for real processes in fields such as aerospace engineering, communications, manufacturing, finance and economy. The theory is a continuation of the authors work presented in their previous book entitled "Mathematical Methods in Robust Control of Linear Stochastic Systems" published by Springer in 2006. Key features: - Provides a common unifying framework for discrete-time stochastic systems corrupted with both independent random perturbations and with Markovian jumps which are usually treated separately in the control literature; - Covers preliminary material on probability theory, independent random variables, conditional expectation and Markov chains; - Proposes new numerical algorithms to solve coupled matrix algebraic Riccati equations; - Leads the reader in a natural way to the original results through a systematic presentation; - Presents new theoretical results with detailed numerical examples. The monograph is geared to researchers and graduate students in advanced control engineering, applied mathematics, mathematical systems theory and finance. It is also accessible to undergraduate students with a fundamental knowledge in the theory of stochastic systems."
Information services are economic and organizational activities for informing people. Because informing is changing rapidly under the influence of internet-technologies, this book presents in Chapter 1 fundamental notions of information and knowledge, based on philosopher C.W. Churchman's inquiring systems. This results in the identification of three product-oriented design theory aspects: content, use value and revenue. Chapter 2 describes how one can cope with these aspects by presenting process-oriented design theory. Both design theory insights are applied in chapters on information services challenges, their business concepts and processes, their architectures and exploitation. The final chapter discusses three case studies that integrate the insights from previous chapters, and it discusses some ideas for future research. This book gives students a coherent start to the topic of information services from a design science perspective, with a balance between technical and managerial aspects. Therefore, this book is useful for modern curricula of management, communication science and information systems. Because of its design science approach, it also explains design science principles. The book also serves professionals and academics in search of a foundational understanding of informing as a science and management practice.
This book explores the latest research trends in intelligent systems and smart applications. It presents high-quality empirical and review studies focusing on various topics, including information systems and software engineering, knowledge management, technology in education, emerging technologies, and social networks. It provides insights into the theoretical and practical aspects of intelligent systems and smart applications.
This book describes a complete revolution in software engineering based on complexity science through the establishment of NSE - Nonlinear Software Engineering paradigm which complies with the essential principles of complexity science, including the Nonlinearity principle, the Holism principle, the Complexity Arises From Simple Rules principle, the Initial Condition Sensitivity principle, the Sensitivity to Change principle, the Dynamics principle, the Openness principle, the Self-organization principle, and the Self-adaptation principle. The aims of this book are to offer revolutionary solutions to solve the critical problems existing with the old-established software engineering paradigm based on linear thinking and simplistic science complied with the superposition principle, and make it possible tohelp software development organizations double their productivity, halve their cost, and remove 99% to 99.99% of the defects in their software products, and efficiently handle software complexity, conformity, visibility, and changeability. It covers almost all areas in software engineering. The tools NSE_CLICK- an automatic acceptance testing platform for outsourcing (or internally developed) C/C++ products, and NSE_CLICK_J - an automatic acceptance testing platform for outsourcing (or internally developed) Java products are particularly designed for non-technical readers to view/review how the acceptance testing of a software product developed with NSE can be performed automatically, and how the product developed with NSE is truly maintainable at the customer site. "
The concept of dynamics and control implies the combination of dynamic analysis and control synthesis. It is essential to gain insight into the dynamics of a nonlinear system with uncertainty if any new control strategy is designed to utilize nonlinearity. However, the new control strategy to be proposed must be robust enough so that any unexpected small disturbances will not alter the desired target of control. Such a concept is calling more attention to the modelling and simplification of dynamic systems subject to uncertain environment, the fine analysis and robust design of controlled dynamic systems resulting in new control strategies due to understanding of nonlinear phenomena and artificial intelligence, the combination of passive control, active control and semi-active control, as well as the interaction among sensors, controllers and actuators.
Networks surround us, from social networks to protein - protein interaction networks within the cells of our bodies. The theory of random graphs provides a necessary framework for understanding their structure and development. This text provides an accessible introduction to this rapidly expanding subject. It covers all the basic features of random graphs - component structure, matchings and Hamilton cycles, connectivity and chromatic number - before discussing models of real-world networks, including intersection graphs, preferential attachment graphs and small-world models. Based on the authors' own teaching experience, it can be used as a textbook for a one-semester course on random graphs and networks at advanced undergraduate or graduate level. The text includes numerous exercises, with a particular focus on developing students' skills in asymptotic analysis. More challenging problems are accompanied by hints or suggestions for further reading.
Today it appears that we understand more about the universe than about our interconnected socio-economic world. In order to uncover organizational structures and novel features in these systems, we present the first comprehensive complex systems analysis of real-world ownership networks. This effort lies at the interface between the realms of economics and the emerging field loosely referred to as complexity science. The structure of global economic power is reflected in the network of ownership ties of companies and the analysis of such ownership networks has possible implications for market competition and financial stability. Thus this work presents powerful new tools for the study of economic and corporate networks that are only just beginning to attract the attention of scholars.
This book presents recent theoretical advances in the analysis and synthesis of discrete-time switched systems under the time-dependent switching scheme, including stability and disturbance attenuation performance analysis, control and filtering, asynchronous switching, finite-time analysis and synthesis, and reachable set estimation. It discusses time-scheduled technology, which can achieve a better performance and reduce conservatism compared with the traditional time-independent approach. Serving as a reference resource for researchers and engineers in the system and control community, it is also useful for graduate and undergraduate students interested in switched systems and their applications.
This review volume consists of a set of chapters written by leading scholars, most of them founders of their fields. It explores the connections of Randomness to other areas of scientific knowledge, especially its fruitful relationship to Computability and Complexity Theory, and also to areas such as Probability, Statistics, Information Theory, Biology, Physics, Quantum Mechanics, Learning Theory and Artificial Intelligence. The contributors cover these topics without neglecting important philosophical dimensions, sometimes going beyond the purely technical to formulate age old questions relating to matters such as determinism and free will.The scope of Randomness Through Computation is novel. Each contributor shares their personal views and anecdotes on the various reasons and motivations which led them to the study of Randomness. Using a question and answer format, they share their visions from their several distinctive vantage points.
The early 21st century has seen a renewed interest in research in the widely-adopted proportional-integral-differential (PID) form of control. PID Control in the Third Millennium provides an overview of the advances made as a result. Featuring: new approaches for controller tuning; control structures and configurations for more efficient control; practical issues in PID implementation; and non-standard approaches to PID including fractional-order, event-based, nonlinear, data-driven and predictive control; the nearly twenty chapters provide a state-of-the-art resume of PID controller theory, design and realization. Each chapter has specialist authorship and ideas clearly characterized from both academic and industrial viewpoints. PID Control in the Third Millennium is of interest to academics requiring a reference for the current state of PID-related research and a stimulus for further inquiry. Industrial practitioners and manufacturers of control systems with application problems relating to PID will find this to be a practical source of appropriate and advanced solutions.
A System of Systems (SoS), as distinct from a system of parts, is a system comprised of pre-existing autonomous and interdependent systems. This book provides two unique contributions to the body of knowledge of System of Systems (SoS) theory, management, and engineering. Firstly, it assesses the dynamics of a SoS through the use of five core characteristics, namely autonomy, belonging, connectivity, diversity and emergence. Secondly, it describes a mechanism of collaboration whereby the characteristics of autonomy and belonging are satisficing for the SoS constituents and the resultant emergent behavior provides value for the observer.
This absorbing book provides a broad introduction to the surprising nature of change, and explains how the Law of Unintended Consequences arises from the waves of change following one simple change. Change is a constant topic of discussion, whether be it on climate, politics, technology, or any of the many other changes in our lives. However, does anyone truly understand what change is?Over time, mankind has deliberately built social and technology based systems that are goal-directed - there are goals to achieve and requirements to be met. Building such systems is man's way of planning for the future, and these plans are based on predicting the behavior of the system and its environment, at specified times in the future. Unfortunately, in a truly complex social or technical environment, this planned predictability can break down into a morass of surprising and unexpected consequences. Such unpredictability stems from the propagation of the effects of change through the influence of one event on another.The Nature of Change explains in detail the mechanism of change and will serve as an introduction to complex systems, or as complementary reading for systems engineering. This textbook will be especially useful to professionals in system building or business change management, and to students studying systems in a variety of fields such as information technology, business, law and society.
The last few years have witnessed rapid advancements in information and coding theory research and applications. This book provides a comprehensive guide to selected topics, both ongoing and emerging, in information and coding theory. Consisting of contributions from well-known and high-profile researchers in their respective specialties, topics that are covered include source coding; channel capacity; linear complexity; code construction, existence and analysis; bounds on codes and designs; space-time coding; LDPC codes; and codes and cryptography.All of the chapters are integrated in a manner that renders the book as a supplementary reference volume or textbook for use in both undergraduate and graduate courses on information and coding theory. As such, it will be a valuable text for students at both undergraduate and graduate levels as well as instructors, researchers, engineers, and practitioners in these fields.Supporting Powerpoint Slides are available upon request for all instructors who adopt this book as a course text.
This guide represents the first serious academic assessment of the relationships between peoples in Africa and of African descent and Afro mass media around the world. Experts on communications in sub-Saharan and North Africa and the Caribbean and African-American media in the United States characterize the settings and philosophical contexts for media in the countries that they survey; the development of often difficult relationships between government, society, and the media; the education and training of media personnel; and the implications of new technologies and future challenges. Designed for students, teachers, and professionals in communications and in the social sciences broadly. This comparative study of Afro mass media, the impact of social and political systems, of culture and ideology, of different communications mechanisms, and of special problems is designed for students, teachers, and professionals in all areas of communications and mass media, and in government, sociology, economics, and African and African-American studies.
This unique volume presents a new approach ??? the general theory of information ??? to scientific understanding of information phenomena. Based on a thorough analysis of information processes in nature, technology, and society, as well as on the main directions in information theory, this theory synthesizes existing directions into a unified system. The book explains how this theory opens new kinds of possibilities for information technology, information sciences, computer science, knowledge engineering, psychology, linguistics, social sciences, and education. The book also gives a broad introduction to the main mathematically-based directions in information theory. The general theory of information provides a unified context for existing directions in information studies, making it possible to elaborate on a comprehensive definition of information; explain relations between information, data, and knowledge; and demonstrate how different mathematical models of information and information processes are related. Explanation of information essence and functioning is given, as well as answers to the following questions: ??? how information is related to knowledge and data; ??? how information is modeled by mathematical structures; ??? how these models are used to better understand computers and the Internet, cognition and education, communication and computation.
AI for Digital Warfare explores how the weaponising of artificial intelligence can and will change how warfare is being conducted, and what impact it will have on the corporate world. With artificial intelligence tools becoming increasingly advanced, and in many cases more humanlike, their potential in psychological warfare is being recognised, which means digital warfare can move beyond just shutting down IT systems into more all-encompassing hybrid war strategies.
This monograph discusses the issues of stability and the control of impulsive systems on hybrid time domains, with systems presented on discrete-time domains, continuous-time domains, and hybrid-time domains (time scales). Research on impulsive systems has recently attracted increased interest around the globe, and significant progress has been made in the theory and application of these systems. This book introduces recent developments in impulsive systems and fundamentals of various types of differential and difference equations. It also covers studies in stability related to time delays and other various control applications on the different impulsive systems. In addition to the analyses presented on dynamical systems that are with or without delays or impulses, this book concludes with possible future directions pertaining to this research.
This comprehensive book examines a range of examples, prepared by a diverse group of academic and industry practitioners, which demonstrate how cloud-based simulation is being extensively used across many disciplines, including cyber-physical systems engineering. This book is a compendium of the state of the art in cloud-based simulation that instructors can use to inform the next generation. It highlights the underlying infrastructure, modeling paradigms, and simulation methodologies that can be brought to bear to develop the next generation of systems for a highly connected society. Such systems, aptly termed cyber-physical systems (CPS), are now widely used in e.g. transportation systems, smart grids, connected vehicles, industrial production systems, healthcare, education, and defense. Modeling and simulation (M&S), along with big data technologies, are at the forefront of complex systems engineering research. The disciplines of cloud-based simulation and CPS engineering are evolving at a rapid pace, but are not optimally supporting each other's advancement. This book brings together these two communities, which already serve multi-disciplinary applications. It provides an overview of the simulation technologies landscape, and of infrastructure pertaining to the use of cloud-based environments for CPS engineering. It covers the engineering, design, and application of cloud simulation technologies and infrastructures applicable for CPS engineering. The contributions share valuable lessons learned from developing real-time embedded and robotic systems deployed through cloud-based infrastructures for application in CPS engineering and IoT-enabled society. The coverage incorporates cloud-based M&S as a medium for facilitating CPS engineering and governance, and elaborates on available cloud-based M&S technologies and their impacts on specific aspects of CPS engineering.
Since the 1950s control theory has established itself as a major mathematical discipline, particularly suitable for application in a number of research fields, including advanced engineering design, economics and the medical sciences. However, since its emergence, there has been a need to rethink and extend fields such as calculus of variations, differential geometry and nonsmooth analysis, which are closely tied to research on applications. Today control theory is a rich source of basic abstract problems arising from applications, and provides an important frame of reference for investigating purely mathematical issues. In many fields of mathematics, the huge and growing scope of activity has been accompanied by fragmentation into a multitude of narrow specialties. However, outstanding advances are often the result of the quest for unifying themes and a synthesis of different approaches. Control theory and its applications are no exception. Here, the interaction between analysis and geometry has played a crucial role in the evolution of the field. This book collects some recent results, highlighting geometrical and analytical aspects and the possible connections between them. Applications provide the background, in the classical spirit of mutual interplay between abstract theory and problem-solving practice.
This extraordinary three-volume work, written in an engaging and rigorous style by a world authority in the field, provides an accessible, comprehensive introduction to the full spectrum of mathematical and statistical techniques underpinning contemporary methods in data-driven learning and inference. This first volume, Foundations, introduces core topics in inference and learning, such as matrix theory, linear algebra, random variables, convex optimization and stochastic optimization, and prepares students for studying their practical application in later volumes. A consistent structure and pedagogy is employed throughout this volume to reinforce student understanding, with over 600 end-of-chapter problems (including solutions for instructors), 100 figures, 180 solved examples, datasets and downloadable Matlab code. Supported by sister volumes Inference and Learning, and unique in its scale and depth, this textbook sequence is ideal for early-career researchers and graduate students across many courses in signal processing, machine learning, statistical analysis, data science and inference.
This is the first book focusing on bifurcation dynamics in 1-dimensional polynomial nonlinear discrete systems. It comprehensively discusses the general mathematical conditions of bifurcations in polynomial nonlinear discrete systems, as well as appearing and switching bifurcations for simple and higher-order singularity period-1 fixed-points in the 1-dimensional polynomial discrete systems. Further, it analyzes the bifurcation trees of period-1 to chaos generated by period-doubling, and monotonic saddle-node bifurcations. Lastly, the book presents methods for period-2 and period-doubling renormalization for polynomial discrete systems, and describes the appearing mechanism and period-doublization of period-n fixed-points on bifurcation trees for the first time, offering readers fascinating insights into recent research results in nonlinear discrete systems. |
You may like...
Binary Bullets - The Ethics of…
Fritz Allhoff, Adam Henschke, …
Hardcover
R3,569
Discovery Miles 35 690
Analysis and Design of Hybrid Systems…
Christos Cassandras, Alessandro Giua, …
Paperback
Computer Aided Verification
Hana Chockler, Georg Weissenbacher
Hardcover
R2,035
Discovery Miles 20 350
|