![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Mathematical foundations > Mathematical logic
Cantor's ideas formed the basis for set theory and also for the mathematical treatment of the concept of infinity. The philosophical and heuristic framework he developed had a lasting effect on modern mathematics, and is the recurrent theme of this volume. Hallett explores Cantor's ideas and, in particular, their ramifications for Zermelo-Frankel set theory.
Finite-state methods are the most efficient mechanisms for analysing textual and symbolic data, providing elegant solutions for an immense number of practical problems in computational linguistics and computer science. This book for graduate students and researchers gives a complete coverage of the field, starting from a conceptual introduction and building to advanced topics and applications. The central finite-state technologies are introduced with mathematical rigour, ranging from simple finite-state automata to transducers and bimachines as 'input-output' devices. Special attention is given to the rich possibilities of simplifying, transforming and combining finite-state devices. All algorithms presented are accompanied by full correctness proofs and executable source code in a new programming language, C(M), which focuses on transparency of steps and simplicity of code. Thus, by enabling readers to obtain a deep formal understanding of the subject and to put finite-state methods to real use, this book closes the gap between theory and practice.
Ever since Paul Cohen's spectacular use of the forcing concept to prove the independence of the continuum hypothesis from the standard axioms of set theory, forcing has been seen by the general mathematical community as a subject of great intrinsic interest but one that is technically so forbidding that it is only accessible to specialists. In the past decade, a series of remarkable solutions to long-standing problems in C*-algebra using set-theoretic methods, many achieved by the author and his collaborators, have generated new interest in this subject. This is the first book aimed at explaining forcing to general mathematicians. It simultaneously makes the subject broadly accessible by explaining it in a clear, simple manner, and surveys advanced applications of set theory to mainstream topics.
In Single Digits, Marc Chamberland takes readers on a fascinating exploration of small numbers, from one to nine, looking at their history, applications, and connections to various areas of mathematics, including number theory, geometry, chaos theory, numerical analysis, and mathematical physics. For instance, why do eight perfect card shuffles leave a standard deck of cards unchanged? And, are there really "six degrees of separation" between all pairs of people? Chamberland explores these questions and covers vast numerical territory, such as illustrating the ways that the number three connects to chaos theory, the number of guards needed to protect an art gallery, problematic election results and so much more. The book's short sections can be read independently and digested in bite-sized chunks--especially good for learning about the Ham Sandwich Theorem and the Pizza Theorem. Appealing to high school and college students, professional mathematicians, and those mesmerized by patterns, this book shows that single digits offer a plethora of possibilities that readers can count on.
'A wealth of examples to which solutions are given permeate the text so the reader will certainly be active.'The Mathematical GazetteThis is the final book written by the late great puzzle master and logician, Dr. Raymond Smullyan.This book is a sequel to my Beginner's Guide to Mathematical Logic.The previous volume deals with elements of propositional and first-order logic, contains a bit on formal systems and recursion, and concludes with chapters on Goedel's famous incompleteness theorem, along with related results.The present volume begins with a bit more on propositional and first-order logic, followed by what I would call a 'fein' chapter, which simultaneously generalizes some results from recursion theory, first-order arithmetic systems, and what I dub a 'decision machine.' Then come five chapters on formal systems, recursion theory and metamathematical applications in a general setting. The concluding five chapters are on the beautiful subject of combinatory logic, which is not only intriguing in its own right, but has important applications to computer science. Argonne National Laboratory is especially involved in these applications, and I am proud to say that its members have found use for some of my results in combinatory logic.This book does not cover such important subjects as set theory, model theory, proof theory, and modern developments in recursion theory, but the reader, after studying this volume, will be amply prepared for the study of these more advanced topics.
In Single Digits, Marc Chamberland takes readers on a fascinating exploration of small numbers, from one to nine, looking at their history, applications, and connections to various areas of mathematics, including number theory, geometry, chaos theory, numerical analysis, and mathematical physics. For instance, why do eight perfect card shuffles leave a standard deck of cards unchanged? And, are there really "six degrees of separation" between all pairs of people? Chamberland explores these questions and covers vast numerical territory, such as illustrating the ways that the number three connects to chaos theory, the number of guards needed to protect an art gallery, problematic election results and so much more. The book's short sections can be read independently and digested in bite-sized chunks--especially good for learning about the Ham Sandwich Theorem and the Pizza Theorem. Appealing to high school and college students, professional mathematicians, and those mesmerized by patterns, this book shows that single digits offer a plethora of possibilities that readers can count on.
This book is addressed primarily to researchers specializing in mathemat ical logic. It may also be of interest to students completing a Masters Degree in mathematics and desiring to embark on research in logic, as well as to teachers at universities and high schools, mathematicians in general, or philosophers wishing to gain a more rigorous conception of deductive reasoning. The material stems from lectures read from 1962 to 1968 at the Faculte des Sciences de Paris and since 1969 at the Universities of Provence and Paris-VI. The only prerequisites demanded of the reader are elementary combinatorial theory and set theory. We lay emphasis on the semantic aspect of logic rather than on syntax; in other words, we are concerned with the connection between formulas and the multirelations, or models, which satisfy them. In this context considerable importance attaches to the theory of relations, which yields a novel approach and algebraization of many concepts of logic. The present two-volume edition considerably widens the scope of the original French] one-volume edition (1967: Relation, Formule logique, Compacite, Completude). The new Volume 1 (1971: Relation et Formule logique) reproduces the old Chapters 1, 2, 3, 4, 5 and 8, redivided as follows: Word, formula (Chapter 1), Connection (Chapter 2), Relation, operator (Chapter 3), Free formula (Chapter 4), Logicalformula, denumer able-model theorem (L6wenheim-Skolem) (Chapter 5), Completeness theorem (G6del-Herbrand) and Interpolation theorem (Craig-Lyndon) (Chapter 6), Interpretability of relations (Chapter 7)."
This book is devoted to efficient pairing computations and implementations, useful tools for cryptographers working on topics like identity-based cryptography and the simplification of existing protocols like signature schemes. As well as exploring the basic mathematical background of finite fields and elliptic curves, Guide to Pairing-Based Cryptography offers an overview of the most recent developments in optimizations for pairing implementation. Each chapter includes a presentation of the problem it discusses, the mathematical formulation, a discussion of implementation issues, solutions accompanied by code or pseudocode, several numerical results, and references to further reading and notes. Intended as a self-contained handbook, this book is an invaluable resource for computer scientists, applied mathematicians and security professionals interested in cryptography.
This book, Algebraic Computability and Enumeration Models: Recursion Theory and Descriptive Complexity, presents new techniques with functorial models to address important areas on pure mathematics and computability theory from the algebraic viewpoint. The reader is first introduced to categories and functorial models, with Kleene algebra examples for languages. Functorial models for Peano arithmetic are described toward important computational complexity areas on a Hilbert program, leading to computability with initial models. Infinite language categories are also introduced to explain descriptive complexity with recursive computability with admissible sets and urelements. Algebraic and categorical realizability is staged on several levels, addressing new computability questions with omitting types realizably. Further applications to computing with ultrafilters on sets and Turing degree computability are examined. Functorial models computability is presented with algebraic trees realizing intuitionistic types of models. New homotopy techniques are applied to Marin Lof types of computations with model categories. Functorial computability, induction, and recursion are examined in view of the above, presenting new computability techniques with monad transformations and projective sets. This informative volume will give readers a complete new feel for models, computability, recursion sets, complexity, and realizability. This book pulls together functorial thoughts, models, computability, sets, recursion, arithmetic hierarchy, filters, with real tree computing areas, presented in a very intuitive manner for university teaching, with exercises for every chapter. The book will also prove valuable for faculty in computer science and mathematics.
The book is a complete collection of Paul Halmos's articles written on the subject of algebraic logic (the theory of Boolean functions). Altogether, there are ten articles, which were published between 1954-1959 in eight different journals spanning four countries. The articles appear in an order that allows the reader unfamiliar with the subject to read them without many prerequisites. In particular, the first article in the book is an accessible introduction to algebraic logic.
What is math? How exactly does it work? And what do three siblings trying to share a cake have to do with it? In How to Bake Pi, math professor Eugenia Cheng provides an accessible introduction to the logic and beauty of mathematics, powered, unexpectedly, by insights from the kitchen. We learn how the bechamel in a lasagna can be a lot like the number five, and why making a good custard proves that math is easy but life is hard. At the heart of it all is Cheng's work on category theory, a cutting-edge "mathematics of mathematics," that is about figuring out how math works. Combined with her infectious enthusiasm for cooking and true zest for life, Cheng's perspective on math is a funny journey through a vast territory no popular book on math has explored before. So, what is math? Let's look for the answer in the kitchen.
Lester Ford's book was the first treatise in English on automorphic functions. At the time of its publication (1929), it was welcomed for its elegant treatment of groups of linear transformations and for the remarkably clear and explicit exposition throughout the book. Ford's extraordinary talent for writing has been memorialized in the prestigious award that bears his name. The book, in the meantime, has become a recognized classic. Ford's approach is primarily through analytic function theory. The first part of the book covers groups of linear transformations, especially Fuchsian groups, fundamental domains, and functions that are invariant under the groups, including the classical elliptic modular functions and Poincare theta series. The second part of the book covers conformal mappings, uniformization, and connections between automorphic functions and differential equations with regular singular points, such as the hypergeometric equation.
Modern cryptography has evolved dramatically since the 1970s. With the rise of new network architectures and services, the field encompasses much more than traditional communication where each side is of a single user. It also covers emerging communication where at least one side is of multiple users. New Directions of Modern Cryptography presents general principles and application paradigms critical to the future of this field. The study of cryptography is motivated by and driven forward by security requirements. All the new directions of modern cryptography, including proxy re-cryptography, attribute-based cryptography, batch cryptography, and noncommutative cryptography have arisen from these requirements. Focusing on these four kinds of cryptography, this volume presents the fundamental definitions, precise assumptions, and rigorous security proofs of cryptographic primitives and related protocols. It also describes how they originated from security requirements and how they are applied. The book provides vivid demonstrations of how modern cryptographic techniques can be used to solve security problems. The applications cover wired and wireless communication networks, satellite communication networks, multicast/broadcast and TV networks, and newly emerging networks. It also describes some open problems that challenge the new directions of modern cryptography. This volume is an essential resource for cryptographers and practitioners of network security, security researchers and engineers, and those responsible for designing and developing secure network systems.
This volume brings together a selection of Solomon Feferman's most important recent writings, covering the relation between logic and mathematics, proof theory, objectivity and intensionality in mathematics, and key issues in the work of Gödel, Hilbert, and Turing.
‘Another terrific book by Rob Eastaway’ SIMON SINGH ‘A delightfully accessible guide to how to play with numbers’ HANNAH FRY How many cats are there in the world? What's the chance of winning the lottery twice? And just how long does it take to count to a million? Learn how to tackle tricky maths problems with nothing but the back of an envelope, a pencil and some good old-fashioned brain power. Join Rob Eastaway as he takes an entertaining look at how to figure without a calculator. Packed with amusing anecdotes, quizzes, and handy calculation tips for every situation, Maths on the Back of an Envelope is an invaluable introduction to the art of estimation, and a welcome reminder that sometimes our own brain is the best tool we have to deal with numbers.
This volume provides a forum which highlights new achievements and overviews of recent developments of the thriving logic groups in the Asia-Pacific region. It contains papers by leading logicians and also some contributions in computer science logics and philosophic logics.
This work is a sequel to the author's Gödel's Incompleteness Theorems, though it can be read independently by anyone familiar with Gödel's incompleteness theorem for Peano arithmetic. The book deals mainly with those aspects of recursion theory that have applications to the metamathematics of incompleteness, undecidability, and related topics. It is both an introduction to the theory and a presentation of new results in the field.
This textbook can serve as a comprehensive manual of discrete mathematics and graph theory for non-Computer Science majors; as a reference and study aid for professionals and researchers who have not taken any discrete math course before. It can also be used as a reference book for a course on Discrete Mathematics in Computer Science or Mathematics curricula. The study of discrete mathematics is one of the first courses on curricula in various disciplines such as Computer Science, Mathematics and Engineering education practices. Graphs are key data structures used to represent networks, chemical structures, games etc. and are increasingly used more in various applications such as bioinformatics and the Internet. Graph theory has gone through an unprecedented growth in the last few decades both in terms of theory and implementations; hence it deserves a thorough treatment which is not adequately found in any other contemporary books on discrete mathematics, whereas about 40% of this textbook is devoted to graph theory. The text follows an algorithmic approach for discrete mathematics and graph problems where applicable, to reinforce learning and to show how to implement the concepts in real-world applications.
This authoritative biography of Kurt Goedel relates the life of this most important logician of our time to the development of the field. Goedel's seminal achievements that changed the perception and foundations of mathematics are explained in the context of his life from the turn of the century Austria to the Institute for Advanced Study in Princeton. |
![]() ![]() You may like...
Innovation in Product Design - From CAD…
Monica Bordegoni, Caterina Rizzi
Hardcover
R2,878
Discovery Miles 28 780
Information and Communication Technology…
Durgesh Kumar Mishra, Malaya Kumar Nayak, …
Hardcover
Designing Around People - CWUAAT 2016
Pat Langdon, Jonathan Lazar, …
Hardcover
Intercultural Challenges for the…
Sara Ganassin, Stefanie Schneider, …
Hardcover
R4,476
Discovery Miles 44 760
Oracle Business Intelligence with…
Rosendo Abellera, Lakshman Bulusu
Paperback
R1,253
Discovery Miles 12 530
Applications of Supercomputers in…
C.A. Brebbia, D. Howard, …
Hardcover
R1,631
Discovery Miles 16 310
|