![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Mathematical foundations > Mathematical logic
It is a fact of modern scientific thought that there is an enormous variety of logical systems - such as classical logic, intuitionist logic, temporal logic, and Hoare logic, to name but a few - which have originated in the areas of mathematical logic and computer science. In this book the author presents a systematic study of this rich harvest of logics via Tarski's well-known axiomatization of the notion of logical consequence. New and sometimes unorthodox treatments are given of the underlying principles and construction of many-valued logics, the logic of inexactness, effective logics, and modal logics. Throughout, numerous historical and philosophical remarks illuminate both the development of the subject and show the motivating influences behind its development. Those with a modest acquaintance of modern formal logic will find this to be a readable and not too technical account which will demonstrate the current diversity and profusion of logics. In particular, undergraduate and postgraduate students in mathematics, philosophy, computer science, and artificial intelligence will enjoy this introductory survey of the field.
Solutions manual to accompany Logic and Discrete Mathematics: A Concise Introduction This book features a unique combination of comprehensive coverage of logic with a solid exposition of the most important fields of discrete mathematics, presenting material that has been tested and refined by the authors in university courses taught over more than a decade. Written in a clear and reader-friendly style, each section ends with an extensive set of exercises, most of them provided with complete solutions which are available in this accompanying solutions manual.
Computability and Logic has become a classic because of its accessibility to students without a mathematical background and because it covers not simply the staple topics of an intermediate logic course, such as Godel's incompleteness theorems, but also a large number of optional topics, from Turing's theory of computability to Ramsey's theorem. This 2007 fifth edition has been thoroughly revised by John Burgess. Including a selection of exercises, adjusted for this edition, at the end of each chapter, it offers a simpler treatment of the representability of recursive functions, a traditional stumbling block for students on the way to the Godel incompleteness theorems. This updated edition is also accompanied by a website as well as an instructor's manual.
Category theory is unmatched in its ability to organize and layer abstractions and to find commonalities between structures of all sorts. No longer the exclusive preserve of pure mathematicians, it is now proving itself to be a powerful tool in science, informatics, and industry. By facilitating communication between communities and building rigorous bridges between disparate worlds, applied category theory has the potential to be a major organizing force. This book offers a self-contained tour of applied category theory. Each chapter follows a single thread motivated by a real-world application and discussed with category-theoretic tools. We see data migration as an adjoint functor, electrical circuits in terms of monoidal categories and operads, and collaborative design via enriched profunctors. All the relevant category theory, from simple to sophisticated, is introduced in an accessible way with many examples and exercises, making this an ideal guide even for those without experience of university-level mathematics.
The most crucial ability for machine learning and data science is mathematical logic for grasping their essence rather than knowledge and experience. This textbook approaches the essence of sparse estimation by considering math problems and building R programs. Each chapter introduces the notion of sparsity and provides procedures followed by mathematical derivations and source programs with examples of execution. To maximize readers' insights into sparsity, mathematical proofs are presented for almost all propositions, and programs are described without depending on any packages. The book is carefully organized to provide the solutions to the exercises in each chapter so that readers can solve the total of 100 exercises by simply following the contents of each chapter. This textbook is suitable for an undergraduate or graduate course consisting of about 15 lectures (90 mins each). Written in an easy-to-follow and self-contained style, this book will also be perfect material for independent learning by data scientists, machine learning engineers, and researchers interested in linear regression, generalized linear lasso, group lasso, fused lasso, graphical models, matrix decomposition, and multivariate analysis. This book is one of a series of textbooks in machine learning by the same author. Other titles are: - Statistical Learning with Math and R (https://www.springer.com/gp/book/9789811575679) - Statistical Learning with Math and Python (https://www.springer.com/gp/book/9789811578762) - Sparse Estimation with Math and Python
The most crucial ability for machine learning and data science is mathematical logic for grasping their essence rather than knowledge and experience. This textbook approaches the essence of machine learning and data science by considering math problems and building Python programs. As the preliminary part, Chapter 1 provides a concise introduction to linear algebra, which will help novices read further to the following main chapters. Those succeeding chapters present essential topics in statistical learning: linear regression, classification, resampling, information criteria, regularization, nonlinear regression, decision trees, support vector machines, and unsupervised learning. Each chapter mathematically formulates and solves machine learning problems and builds the programs. The body of a chapter is accompanied by proofs and programs in an appendix, with exercises at the end of the chapter. Because the book is carefully organized to provide the solutions to the exercises in each chapter, readers can solve the total of 100 exercises by simply following the contents of each chapter. This textbook is suitable for an undergraduate or graduate course consisting of about 12 lectures. Written in an easy-to-follow and self-contained style, this book will also be perfect material for independent learning.
Koennen Computer alles? Wenn es so ware, gabe es dieses Buch nicht. Es beweist bestechend logisch, dass selbst die groessten, schnellsten, intelligentesten und teuersten Computer der Welt nur beschrankt leistungsfahig sind. Der Mensch kann noch so viel Geld, Zeit und Know-how investieren, es gibt Computer-Probleme, die er niemals loesen wird. Eine beunruhigende, provokative Botschaft - und doch: wussten wir es nicht eigentlich schon, haben es aber nie wirklich glauben wollen? Der bekannte Computer-Wissenschaftler David Harel vermittelt die mathematischen Fakten spannend, unterhaltsam und allgemeinverstandlich. Mit der Beschranktheit des Computers werden wir an die Grenzen allen Wissens gefuhrt. Grenzen, die den Menschen beflugeln, das Moegliche weiter zu verbessern und selbst aus dem Unmoeglichen Nutzen zu ziehen. Eine brillante tour de force mit uberraschenden Aspekten, die den Leser - ob vorgebildeter Laie oder Fachkundiger - von der ersten bis zur letzten Seite fesselt.
Between inventing the concept of a universal computer in 1936 and breaking the German Enigma code during World War II, Alan Turing (1912-1954), the British founder of computer science and artificial intelligence, came to Princeton University to study mathematical logic. Some of the greatest logicians in the world--including Alonzo Church, Kurt Godel, John von Neumann, and Stephen Kleene--were at Princeton in the 1930s, and they were working on ideas that would lay the groundwork for what would become known as computer science. This book presents a facsimile of the original typescript of Turing's fascinating and influential 1938 Princeton PhD thesis, one of the key documents in the history of mathematics and computer science. The book also features essays by Andrew Appel and Solomon Feferman that explain the still-unfolding significance of the ideas Turing developed at Princeton. A work of philosophy as well as mathematics, Turing's thesis envisions a practical goal--a logical system to formalize mathematical proofs so they can be checked mechanically. If every step of a theorem could be verified mechanically, the burden on intuition would be limited to the axioms. Turing's point, as Appel writes, is that "mathematical reasoning can be done, and should be done, in mechanizable formal logic." Turing's vision of "constructive systems of logic for practical use" has become reality: in the twenty-first century, automated "formal methods" are now routine. Presented here in its original form, this fascinating thesis is one of the key documents in the history of mathematics and computer science."
In these essays Geoffrey Hellman presents a strong case for a healthy pluralism in mathematics and its logics, supporting peaceful coexistence despite what appear to be contradictions between different systems, and positing different frameworks serving different legitimate purposes. The essays refine and extend Hellman's modal-structuralist account of mathematics, developing a height-potentialist view of higher set theory which recognizes indefinite extendability of models and stages at which sets occur. In the first of three new essays written for this volume, Hellman shows how extendability can be deployed to derive the axiom of Infinity and that of Replacement, improving on earlier accounts; he also shows how extendability leads to attractive, novel resolutions of the set-theoretic paradoxes. Other essays explore advantages and limitations of restrictive systems - nominalist, predicativist, and constructivist. Also included are two essays, with Solomon Feferman, on predicative foundations of arithmetic.
Cryptography, the science of encoding and decoding information, allows people to do online banking, online trading, and make online purchases, without worrying that their personal information is being compromised. The dramatic increase of information transmitted electronically has led to an increased reliance on cryptography. This book discusses the theories and concepts behind modern cryptography and demonstrates how to develop and implement cryptographic algorithms using C++ programming language. Written for programmers and engineers, Practical Cryptography explains how you can use cryptography to maintain the privacy of computer data. It describes dozens of cryptography algorithms, gives practical advice on how to implement them into cryptographic software, and shows how they can be used to solve security problems. Covering the latest developments in practical cryptographic techniques, this book shows you how to build security into your computer applications, networks, and storage. Suitable for undergraduate and postgraduate students in cryptography, network security, and other security-related courses, this book will also help anyone involved in computer and network security who wants to learn the nuts and bolts of practical cryptography.
Topos Theory is an important branch of mathematical logic of interest to theoretical computer scientists, logicians and philosophers who study the foundations of mathematics, and to those working in differential geometry and continuum physics. This compendium contains material that was previously available only in specialist journals. This is likely to become the standard reference work for all those interested in the subject.
Topos Theory is an important branch of mathematical logic of interest to theoretical computer scientists, logicians and philosophers who study the foundations of mathematics, and to those working in differential geometry and continuum physics. This compendium contains material that was previously available only in specialist journals. This is likely to become the standard reference work for all those interested in the subject.
Topos Theory is an important branch of mathematical logic of interest to theoretical computer scientists, logicians and philosophers who study the foundations of mathematics, and to those working in differential geometry and continuum physics. This compendium contains material that was previously available only in specialist journals. This is likely to become the standard reference work for all those interested in the subject.
Automatic sequences are sequences over a finite alphabet generated by a finite-state machine. This book presents a novel viewpoint on automatic sequences, and more generally on combinatorics on words, by introducing a decision method through which many new results in combinatorics and number theory can be automatically proved or disproved with little or no human intervention. This approach to proving theorems is extremely powerful, allowing long and error-prone case-based arguments to be replaced by simple computations. Readers will learn how to phrase their desired results in first-order logic, using free software to automate the computation process. Results that normally require multipage proofs can emerge in milliseconds, allowing users to engage with mathematical questions that would otherwise be difficult to solve. With more than 150 exercises included, this text is an ideal resource for researchers, graduate students, and advanced undergraduates studying combinatorics, sequences, and number theory.
This textbook offers a detailed introduction to the methodology and applications of sequent calculi in propositional logic. Unlike other texts concerned with proof theory, emphasis is placed on illustrating how to use sequent calculi to prove a wide range of metatheoretical results. The presentation is elementary and self-contained, with all technical details both formally stated and also informally explained. Numerous proofs are worked through to demonstrate methods of proving important results, such as the cut-elimination theorem, completeness, decidability, and interpolation. Other proofs are presented with portions left as exercises for readers, allowing them to practice techniques of sequent calculus. After a brief introduction to classical propositional logic, the text explores three variants of sequent calculus and their features and applications. The remaining chapters then show how sequent calculi can be extended, modified, and applied to non-classical logics, including modal, intuitionistic, substructural, and many-valued logics. Sequents and Trees is suitable for graduate and advanced undergraduate students in logic taking courses on proof theory and its application to non-classical logics. It will also be of interest to researchers in computer science and philosophers.
Using a unique pedagogical approach, this text introduces mathematical logic by guiding students in implementing the underlying logical concepts and mathematical proofs via Python programming. This approach, tailored to the unique intuitions and strengths of the ever-growing population of programming-savvy students, brings mathematical logic into the comfort zone of these students and provides clarity that can only be achieved by a deep hands-on understanding and the satisfaction of having created working code. While the approach is unique, the text follows the same set of topics typically covered in a one-semester undergraduate course, including propositional logic and first-order predicate logic, culminating in a proof of Goedel's completeness theorem. A sneak peek to Goedel's incompleteness theorem is also provided. The textbook is accompanied by an extensive collection of programming tasks, code skeletons, and unit tests. Familiarity with proofs and basic proficiency in Python is assumed.
This textbook gives a complete and modern introduction to mathematical logic. The author uses contemporary notation, conventions, and perspectives throughout, and emphasizes interactions with the rest of mathematics. In addition to covering the basic concepts of mathematical logic and the fundamental material on completeness, compactness, and incompleteness, it devotes significant space to thorough introductions to the pillars of the modern subject: model theory, set theory, and computability. Requiring only a modest background of undergraduate mathematics, the text can be readily adapted for a variety of one- or two-semester courses at the upper-undergraduate or beginning-graduate level. Numerous examples reinforce the key ideas and illustrate their applications, and a wealth of classroom-tested exercises serve to consolidate readers' understanding. Comprehensive and engaging, this book offers a fresh approach to this enduringly fascinating and important subject.
This is a long-awaited new edition of one of the best known Oxford Logic Guides. The book gives an introduction to intuitionistic mathematics, leading the reader gently through the fundamental mathematical and philosophical concepts. The treatment of various topics, for example Brouwer's proof of the Bar Theorem, valuation systems, and the completeness of intuitionistic first-order logic, have been completely revised.
Is mathematics 'entangled' with its various formalisations? Or are the central concepts of mathematics largely insensitive to formalisation, or 'formalism free'? What is the semantic point of view and how is it implemented in foundational practice? Does a given semantic framework always have an implicit syntax? Inspired by what she calls the 'natural language moves' of Goedel and Tarski, Juliette Kennedy considers what roles the concepts of 'entanglement' and 'formalism freeness' play in a range of logical settings, from computability and set theory to model theory and second order logic, to logicality, developing an entirely original philosophy of mathematics along the way. The treatment is historically, logically and set-theoretically rich, and topics such as naturalism and foundations receive their due, but now with a new twist.
This book reports on cutting-edge concepts related to Bourbaki's notion of structures meres. It merges perspectives from logic, philosophy, linguistics and cognitive science, suggesting how they can be combined with Bourbaki's mathematical structuralism in order to solve foundational, ontological and epistemological problems using a novel category-theoretic approach. By offering a comprehensive account of Bourbaki's structuralism and answers to several important questions that have arisen in connection with it, the book provides readers with a unique source of information and inspiration for future research on this topic.
This is the second of two volumes by Professor Cherlin presenting the state of the art in the classification of homogeneous structures in binary languages and related problems in the intersection of model theory and combinatorics. Researchers and graduate students in the area will find in these volumes many far-reaching results and interesting new research directions to pursue. This volume continues the analysis of the first volume to 3-multi-graphs and 3-multi-tournaments, expansions of graphs and tournaments by the addition of a further binary relation. The opening chapter provides an overview of the volume, outlining the relevant results and conjectures. The author applies and extends the results of Volume I to obtain a detailed catalogue of such structures and a second classification conjecture. The book ends with an appendix exploring recent advances and open problems in the theory of homogeneous structures and related subjects.
This is the first of two volumes by Professor Cherlin presenting the state of the art in the classification of homogeneous structures in binary languages and related problems in the intersection of model theory and combinatorics. Researchers and graduate students in the area will find in these volumes many far-reaching results and interesting new research directions to pursue. In this volume, Cherlin develops a complete classification of homogeneous ordered graphs and provides a full proof. He then proposes a new family of metrically homogeneous graphs, a weakening of the usual homogeneity condition. A general classification conjecture is presented, together with general structure theory and applications to a general classification conjecture for such graphs. It also includes introductory chapters giving an overview of the results and methods of both volumes, and an appendix surveying recent developments in the area. An extensive accompanying bibliography of related literature, organized by topic, is available online.
Diese Absicht wurde verstarkt durch den ausseren Umstand, dass in zunehmendem Masse Mathematikstudenten der Munchner Universitat bei mir Logik als Nebenfach wahlten. Da diese Kandidaten meist keine Zeit und Gelegenheit hatten, meine Veranstaltungen zu besuchen, kam der verstandliche Wunsch auf, ich moege "etwas Schriftliches verfassen", das man mit nach Hause nehmen koenne. Hinzu kam schliesslich noch das Wissen um didaktische Nachteile vieler Logik-Bucher. In den meisten von ihnen werden nur spezielle syntaktische und semantische Verfahren behandelt. Wenn z. B. in einem Werk ausschliesslich die axiomatische Methode, in einem weiteren allein das naturliche Schliessen und in einem dritten nur der Kalkul der PositivfNegativ-Teile vorgefuhrt wird, so fallt es selbst einem routinier ten Mathematiker schwer, die Gleichwertigkeit dieser Kalkulisierungen einzusehen. Weichen dann auch noch die Systematisierungen der Se mantik erheblich voneinander ab, so wird ein Nichtmathematiker ver mutlich sogar den Eindruck gewinnen, die fraglichen Bucher handelten von verschiedenen Gegenstanden. Doch dies ist nur die eine Seite der Medaille. In immer mehr Bucher, die das Wort ,Logik' im Titel tragen, werden namlich umgekehrt mehr oder weniger ausfuhrlich Bereiche einbezogen, die zwar fur Untersuchungen zur Logik von Wichtigkeit sind, die jedoch weit uber den Rahmen der Logik hinausfuhren, wie z. B. Rekursionstheorie, axiomatische Mengenlehre oder Hilbertsche Beweis theorie. Zieht man die Grenze einmal so weit, so ist nicht zu erkennen, warum nicht noch viel mehr einbezogen werden sollte. In zunehmendem Masse spielen z. B. algebraische Begriffe eine wichtige Rolle bei logischen Untersuchungen.
Change, Choice and Inference unifies lively and significant strands of research in logic, philosophy, economics and artificial intelligence.
This book reports on cutting-edge concepts related to Bourbaki's notion of structures meres. It merges perspectives from logic, philosophy, linguistics and cognitive science, suggesting how they can be combined with Bourbaki's mathematical structuralism in order to solve foundational, ontological and epistemological problems using a novel category-theoretic approach. By offering a comprehensive account of Bourbaki's structuralism and answers to several important questions that have arisen in connection with it, the book provides readers with a unique source of information and inspiration for future research on this topic. |
![]() ![]() You may like...
Handbook of Research on Emerging Trends…
Arun Solanki, Sandeep Kumar, …
Hardcover
R11,237
Discovery Miles 112 370
Implementation of Machine Learning…
Veljko Milutinovi, Nenad Mitic, …
Hardcover
R7,211
Discovery Miles 72 110
Mining Very Large Databases with…
Alex A. Freitas, Simon H. Lavington
Hardcover
R5,704
Discovery Miles 57 040
Fault-Tolerant Parallel and Distributed…
Dimiter R. Avresky, David R. Kaeli
Hardcover
R4,589
Discovery Miles 45 890
Intelligent Computing in Control and…
G. T. Chandra Sekhar, H.S. Behera, …
Hardcover
R5,731
Discovery Miles 57 310
|