![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Mathematical foundations > Mathematical logic
· Are you more likely to become a professional footballer if your surname is Ball? · How can you be one hundred per cent sure you will win a bet? · Why did so many Pompeiians stay put while Mount Vesuvius was erupting? · How do you prevent a nuclear war? Ever since the dawn of human civilisation, we have been trying to make predictions about what's in store for us. We do this on a personal level, so that we can get on with our lives efficiently (should I hang my laundry out to dry, or will it rain?). But we also have to predict on a much larger scale, often for the good of our broader society (how can we spot economic downturns or prevent terrorist attacks?). For just as long, we have been getting it wrong. From religious oracles to weather forecasters, and from politicians to economists, we are subjected to poor predictions all the time. Our job is to separate the good from the bad. Unfortunately, the foibles of our own biology - the biases that ultimately make us human - can let us down when it comes to making rational inferences about the world around us. And that can have disastrous consequences. How to Expect the Unexpected will teach you how and why predictions go wrong, help you to spot phony forecasts and give you a better chance of getting your own predictions correct.
Model theory begins with an audacious idea: to consider statements about mathematical structures as mathematical objects of study in their own right. While inherently important as a tool of mathematical logic, it also enjoys connections to and applications in diverse branches of mathematics, including algebra, number theory and analysis. Despite this, traditional introductions to model theory assume a graduate-level background of the reader. In this innovative textbook, Jonathan Kirby brings model theory to an undergraduate audience. The highlights of basic model theory are illustrated through examples from specific structures familiar from undergraduate mathematics, paying particular attention to definable sets throughout. With numerous exercises of varying difficulty, this is an accessible introduction to model theory and its place in mathematics.
This gentle introduction to logic and model theory is based on a systematic use of three important games in logic: the semantic game; the Ehrenfeucht Fraisse game; and the model existence game. The third game has not been isolated in the literature before but it underlies the concepts of Beth tableaux and consistency properties. Jouko Vaananen shows that these games are closely related and in turn govern the three interrelated concepts of logic: truth, elementary equivalence and proof. All three methods are developed not only for first order logic but also for infinitary logic and generalized quantifiers. Along the way, the author also proves completeness theorems for many logics, including the cofinality quantifier logic of Shelah, a fully compact extension of first order logic. With over 500 exercises this book is ideal for graduate courses, covering the basic material as well as more advanced applications.
Model theory is used in every theoretical branch of analytic philosophy: in philosophy of mathematics, in philosophy of science, in philosophy of language, in philosophical logic, and in metaphysics. But these wide-ranging uses of model theory have created a highly fragmented literature. On the one hand, many philosophically significant results are found only in mathematics textbooks: these are aimed squarely at mathematicians; they typically presuppose that the reader has a serious background in mathematics; and little clue is given as to their philosophical significance. On the other hand, the philosophical applications of these results are scattered across disconnected pockets of papers. The first aim of this book, then, is to explore the philosophical uses of model theory, focusing on the central topics of reference, realism, and doxology. Its second aim is to address important questions in the philosophy of model theory, such as: sameness of theories and structure, the boundaries of logic, and the classification of mathematical structures. Philosophy and Model Theory will be accessible to anyone who has completed an introductory logic course. It does not assume that readers have encountered model theory before, but starts right at the beginning, discussing philosophical issues that arise even with conceptually basic model theory. Moreover, the book is largely self-contained: model-theoretic notions are defined as and when they are needed for the philosophical discussion, and many of the most philosophically significant results are given accessible proofs.
The logician Kurt Goedel in 1951 established a disjunctive thesis about the scope and limits of mathematical knowledge: either the mathematical mind is not equivalent to a Turing machine (i.e., a computer), or there are absolutely undecidable mathematical problems. In the second half of the twentieth century, attempts have been made to arrive at a stronger conclusion. In particular, arguments have been produced by the philosopher J.R. Lucas and by the physicist and mathematician Roger Penrose that intend to show that the mathematical mind is more powerful than any computer. These arguments, and counterarguments to them, have not convinced the logical and philosophical community. The reason for this is an insufficiency if rigour in the debate. The contributions in this volume move the debate forward by formulating rigorous frameworks and formally spelling out and evaluating arguments that bear on Goedel's disjunction in these frameworks. The contributions in this volume have been written by world leading experts in the field.
Presents theories and applications in an attempt to raise expectations and outcomes The subject of linear algebra is presented over arbitrary fields Includes many non-trivial examples which address real-world problems
Roy T Cook examines the Yablo paradox-a paradoxical, infinite sequence of sentences, each of which entails the falsity of all others later than it in the sequence-with special attention paid to the idea that this paradox provides us with a semantic paradox that involves no circularity. The three main chapters of the book focus, respectively, on three questions that can be (and have been) asked about the Yablo construction. First we have the Characterization Problem, which asks what patterns of sentential reference (circular or not) generate semantic paradoxes. Addressing this problem requires an interesting and fruitful detour through the theory of directed graphs, allowing us to draw interesting connections between philosophical problems and purely mathematical ones. Next is the Circularity Question, which addresses whether or not the Yablo paradox is genuinely non-circular. Answering this question is complicated: although the original formulation of the Yablo paradox is circular, it turns out that it is not circular in any sense that can bear the blame for the paradox. Further, formulations of the paradox using infinitary conjunction provide genuinely non-circular constructions. Finally, Cook turns his attention to the Generalizability Question: can the Yabloesque pattern be used to generate genuinely non-circular variants of other paradoxes, such as epistemic and set-theoretic paradoxes? Cook argues that although there are general constructions-unwindings-that transform circular constructions into Yablo-like sequences, it turns out that these sorts of constructions are not 'well-behaved' when transferred from semantic puzzles to puzzles of other sorts. He concludes with a short discussion of the connections between the Yablo paradox and the Curry paradox.
Kurt Godel (1906 - 1978) was the most outstanding logician of the
twentieth century, famous for his hallmark works on the
completeness of logic, the incompleteness of number theory, and the
consistency of the axiom of choice and the continuum hypothesis. He
is also noted for his work on constructivity, the decision problem,
and the foundations of computability theory, as well as for the
strong individuality of his writings on the philosophy of
mathematics. He is less well known for his discovery of unusual
cosmological models for Einstein's equations, in theory permitting
time travel into the past.
Kurt Godel (1906 - 1978) was the most outstanding logician of the
twentieth century, famous for his hallmark works on the
completeness of logic, the incompleteness of number theory, and the
consistency of the axiom of choice and the continuum hypothesis. He
is also noted for his work on constructivity, the decision problem,
and the foundations of computability theory, as well as for the
strong individuality of his writings on the philosophy of
mathematics. He is less well known for his discovery of unusual
cosmological models for Einstein's equations, in theory permitting
time travel into the past.
Computability theory is a branch of mathematical logic and computer science that has become increasingly relevant in recent years. The field has developed growing connections in diverse areas of mathematics, with applications in topology, group theory, and other subfields. In A Hierarchy of Turing Degrees, Rod Downey and Noam Greenberg introduce a new hierarchy that allows them to classify the combinatorics of constructions from many areas of computability theory, including algorithmic randomness, Turing degrees, effectively closed sets, and effective structure theory. This unifying hierarchy gives rise to new natural definability results for Turing degree classes, demonstrating how dynamic constructions become reflected in definability. Downey and Greenberg present numerous construction techniques involving high-level nonuniform arguments, and their self-contained work is appropriate for graduate students and researchers. Blending traditional and modern research results in computability theory, A Hierarchy of Turing Degrees establishes novel directions in the field.
Descriptive set theory has been one of the main areas of research in set theory for almost a century. This text attempts to present a largely balanced approach, which combines many elements of the different traditions of the subject. It includes a wide variety of examples, exercises (over 400), and applications, in order to illustrate the general concepts and results of the theory. This text provides a first basic course in classical descriptive set theory and covers material with which mathematicians interested in the subject for its own sake or those that wish to use it in their field should be familiar. Over the years, researchers in diverse areas of mathematics, such as logic and set theory, analysis, topology, probability theory, etc., have brought to the subject of descriptive set theory their own intuitions, concepts, terminology and notation.
This text presents topos theory as it has developed from the study of sheaves. Sheaves arose in geometry as coefficients for cohomology and as descriptions of the functions appropriate to various kinds of manifolds (algebraic, analytic, etc.). Sheaves also appear in logic as carriers for models of set theory as well as for the semantics of other types of logic. Grothendieck introduced a topos as a category of sheaves for algebraic geometry. Subsequently, Lawvere and Tierney obtained elementary axioms for such (more general) categories. This introduction to topos theory begins with a number of illustrative examples that explain the origin of these ideas and then describes the sheafification process and the properties of an elementary topos. The applications to axiomatic set theory and the use in forcing (the Independence of the Continuum Hypothesis and of the Axiom of Choice) are then described. Geometric morphisms- like continuous maps of spaces and the construction of classifying topoi, for example those related to local rings and simplicial sets, next appear, followed by the use of locales (pointless spaces) and the construction of topoi related to geometric languages and logic. This is the first text to address all of these varied aspects of topos theory at the graduate student level.
Model theory, a major branch of mathematical logic, plays a key
role connecting logic and other areas of mathematics such as
algebra, geometry, analysis, and combinatorics. Simplicity theory,
a subject of model theory, studies a class of mathematical
structures, called simple. The class includes all stable structures
(vector spaces, modules, algebraically closed fields,
differentially closed fields, and so on), and also important
unstable structures such as the random graph, smoothly approximated
structures, pseudo-finite fields, ACFA and more. Simplicity theory
supplies the uniform model theoretic points of views to such
structures in addition to their own mathematical analyses.
The notion of proof is central to mathematics yet it is one of the most difficult aspects of the subject to teach and master. In particular, undergraduate mathematics students often experience difficulties in understanding and constructing proofs. Understanding Mathematical Proof describes the nature of mathematical proof, explores the various techniques that mathematicians adopt to prove their results, and offers advice and strategies for constructing proofs. It will improve students' ability to understand proofs and construct correct proofs of their own. The first chapter of the text introduces the kind of reasoning that mathematicians use when writing their proofs and gives some example proofs to set the scene. The book then describes basic logic to enable an understanding of the structure of both individual mathematical statements and whole mathematical proofs. It also explains the notions of sets and functions and dissects several proofs with a view to exposing some of the underlying features common to most mathematical proofs. The remainder of the book delves further into different types of proof, including direct proof, proof using contrapositive, proof by contradiction, and mathematical induction. The authors also discuss existence and uniqueness proofs and the role of counter examples.
This is the first logically precise, computationally implementable,
book-length account of rational belief revision. It explains how a
rational agent ought to proceed when adopting a new belief - a
difficult matter if the new belief contradicts the agent's old
beliefs.
This open access book makes a case for extending logic beyond its traditional boundaries, to encompass not only statements but also also questions. The motivations for this extension are examined in detail. It is shown that important notions, including logical answerhood and dependency, emerge as facets of the fundamental notion of entailment once logic is extended to questions, and can therefore be treated with the logician's toolkit, including model-theoretic constructions and proof systems. After motivating the enterprise, the book describes how classical propositional and predicate logic can be made inquisitive-i.e., extended conservatively with questions-and what the resulting logics look like in terms of meta-theoretic properties and proof systems. Finally, the book discusses the tight connections between inquisitive logic and dependence logic.
This book focuses on one of the major challenges of the newly created scientific domain known as data science: turning data into actionable knowledge in order to exploit increasing data volumes and deal with their inherent complexity. Actionable knowledge has been qualitatively and intensively studied in management, business, and the social sciences but in computer science and engineering, its connection has only recently been established to data mining and its evolution, 'Knowledge Discovery and Data Mining' (KDD). Data mining seeks to extract interesting patterns from data, but, until now, the patterns discovered from data have not always been 'actionable' for decision-makers in Socio-Technical Organizations (STO). With the evolution of the Internet and connectivity, STOs have evolved into Cyber-Physical and Social Systems (CPSS) that are known to describe our world today. In such complex and dynamic environments, the conventional KDD process is insufficient, and additional processes are required to transform complex data into actionable knowledge. Readers are presented with advanced knowledge concepts and the analytics and information fusion (AIF) processes aimed at delivering actionable knowledge. The authors provide an understanding of the concept of 'relation' and its exploitation, relational calculus, as well as the formalization of specific dimensions of knowledge that achieve a semantic growth along the AIF processes. This book serves as an important technical presentation of relational calculus and its application to processing chains in order to generate actionable knowledge. It is ideal for graduate students, researchers, or industry professionals interested in decision science and knowledge engineering.
An Introduction to Proof Theory provides an accessible introduction to the theory of proofs, with details of proofs worked out and examples and exercises to aid the reader's understanding. It also serves as a companion to reading the original pathbreaking articles by Gerhard Gentzen. The first half covers topics in structural proof theory, including the Goedel-Gentzen translation of classical into intuitionistic logic (and arithmetic), natural deduction and the normalization theorems (for both NJ and NK), the sequent calculus, including cut-elimination and mid-sequent theorems, and various applications of these results. The second half examines ordinal proof theory, specifically Gentzen's consistency proof for first-order Peano Arithmetic. The theory of ordinal notations and other elements of ordinal theory are developed from scratch, and no knowledge of set theory is presumed. The proof methods needed to establish proof-theoretic results, especially proof by induction, are introduced in stages throughout the text. Mancosu, Galvan, and Zach's introduction will provide a solid foundation for those looking to understand this central area of mathematical logic and the philosophy of mathematics.
Paolo Mancosu presents a series of innovative studies in the history and the philosophy of logic and mathematics in the first half of the twentieth century. The Adventure of Reason is divided into five main sections: history of logic (from Russell to Tarski); foundational issues (Hilbert's program, constructivity, Wittgenstein, Godel); mathematics and phenomenology (Weyl, Becker, Mahnke); nominalism (Quine, Tarski); semantics (Tarski, Carnap, Neurath). Mancosu exploits extensive untapped archival sources to make available a wealth of new material that deepens in significant ways our understanding of these fascinating areas of modern intellectual history. At the same time, the book is a contribution to recent philosophical debates, in particular on the prospects for a successful nominalist reconstruction of mathematics, the nature of finitist intuition, the viability of alternative definitions of logical consequence, and the extent to which phenomenology can hope to account for the exact sciences.
The interplay between computability and randomness has been an
active area of research in recent years, reflected by ample funding
in the USA, numerous workshops, and publications on the subject.
The complexity and the randomness aspect of a set of natural
numbers are closely related. Traditionally, computability theory is
concerned with the complexity aspect. However, computability
theoretic tools can also be used to introduce mathematical
counterparts for the intuitive notion of randomness of a set.
Recent research shows that, conversely, concepts and methods
originating from randomness enrich computability theory. |
![]() ![]() You may like...
Introduction to Cryptography with Maple
Jose Luis Gomez-Pardo
Hardcover
R1,668
Discovery Miles 16 680
Physical-Layer Security for Cooperative…
Yulong Zou, Jia Zhu
Hardcover
R2,873
Discovery Miles 28 730
Imaging, Vision and Learning Based on…
Xue-Cheng Tai, Egil Bae, …
Hardcover
R1,543
Discovery Miles 15 430
The Garbage Collection Handbook - The…
Richard Jones, Antony Hosking, …
Hardcover
R1,946
Discovery Miles 19 460
Two-Degree-of-Freedom Control Systems…
Laszlo Keviczky, Cs. Banyasz
Paperback
Population Genetics
Rafael Trindade Maia, Magnolia Campos de Araujo
Hardcover
R3,675
Discovery Miles 36 750
|