|
Books > Science & Mathematics > Mathematics > Mathematical foundations > Mathematical logic
This is a reproduction of a book published before 1923. This book
may have occasional imperfections such as missing or blurred pages,
poor pictures, errant marks, etc. that were either part of the
original artifact, or were introduced by the scanning process. We
believe this work is culturally important, and despite the
imperfections, have elected to bring it back into print as part of
our continuing commitment to the preservation of printed works
worldwide. We appreciate your understanding of the imperfections in
the preservation process, and hope you enjoy this valuable book.
++++ The below data was compiled from various identification fields
in the bibliographic record of this title. This data is provided as
an additional tool in helping to ensure edition identification:
++++ Principia Mathematica, Volume 2; Principia Mathematica;
Bertrand Russell Alfred North Whitehead, Bertrand Russell
University Press, 1912 Logic, Symbolic and mathematical;
Mathematics
This is a reproduction of a book published before 1923. This book
may have occasional imperfections such as missing or blurred pages,
poor pictures, errant marks, etc. that were either part of the
original artifact, or were introduced by the scanning process. We
believe this work is culturally important, and despite the
imperfections, have elected to bring it back into print as part of
our continuing commitment to the preservation of printed works
worldwide. We appreciate your understanding of the imperfections in
the preservation process, and hope you enjoy this valuable book.
++++ The below data was compiled from various identification fields
in the bibliographic record of this title. This data is provided as
an additional tool in helping to ensure edition identification:
++++ Principia Mathematica, Volume 2; Principia Mathematica;
Bertrand Russell Alfred North Whitehead, Bertrand Russell
University Press, 1912 Logic, Symbolic and mathematical;
Mathematics
This volume is number five in the 11-volume "Handbook of the
History of Logic." It covers the first 50 years of the development
of mathematical logic in the 20th century, and concentrates on the
achievements of the great names of the period--Russell, Post,
Godel, Tarski, Church, and the like. This was the period in which
mathematical logic gave mature expression to its four main parts:
set theory, model theory, proof theory and recursion theory.
Collectively, this work ranks as one of the greatest achievements
of our intellectual history. Written by leading researchers in the
field, both this volume and the Handbook as a whole are definitive
reference tools for senior undergraduates, graduate students and
researchers in the history of logic, the history of philosophy, and
any discipline, such as mathematics, computer science, and
artificial intelligence, for whom the historical background of his
or her work is a salient consideration.
The entire range of modal logic is covered
Serves as a singular contribution to the intellectual history of
the 20th century
Contains the latest scholarly discoveries and interpretative
insights"
This book gives a rigorous yet physics focused introduction to
mathematical logic that is geared towards natural science majors.
We present the science major with a robust introduction to logic,
focusing on the specific knowledge and skills that will unavoidably
be needed in calculus topics and natural science topics in general
rather than taking a philosophical-math-fundamental oriented
approach that is commonly found in mathematical logic textbooks.
What link might connect two far worlds like quantum theory and
music? There is something universal in the mathematical formalism
of quantum theory that goes beyond the limits of its traditional
physical applications. We are now beginning to understand how some
mysterious quantum concepts, like superposition and entanglement,
can be used as a semantic resource.
This book is the third of a three-volume set of books on the theory
of algebras, a study that provides a consistent framework for
understanding algebraic systems, including groups, rings, modules,
semigroups and lattices. Volume I, first published in the 1980s,
built the foundations of the theory and is considered to be a
classic in this field. The long-awaited volumes II and III are now
available. Taken together, the three volumes provide a
comprehensive picture of the state of art in general algebra today,
and serve as a valuable resource for anyone working in the general
theory of algebraic systems or in related fields. The two new
volumes are arranged around six themes first introduced in Volume
I. Volume II covers the Classification of Varieties, Equational
Logic, and Rudiments of Model Theory, and Volume III covers Finite
Algebras and their Clones, Abstract Clone Theory, and the
Commutator. These topics are presented in six chapters with
independent expositions, but are linked by themes and motifs that
run through all three volumes.
Neutrosophy is a new branch of philosophy that studies the origin,
nature, and scope of neutralities as well as their interactions
with different ideational spectra. In all classical algebraic
structures, the law of compositions on a given set are
well-defined, but this is a restrictive case because there are
situations in science where a law of composition defined on a set
may be only partially defined and partially undefined, which we
call NeutroDefined, or totally undefined, which we call
AntiDefined. Theory and Applications of NeutroAlgebras as
Generalizations of Classical Algebra introduces NeutroAlgebra, an
emerging field of research. This book provides a comprehensive
collection of original work related to NeutroAlgebra and covers
topics such as image retrieval, mathematical morphology, and
NeutroAlgebraic structure. It is an essential resource for
philosophers, mathematicians, researchers, educators and students
of higher education, and academicians.
For thousands of years, mathematicians have used the timeless art of logic to see the world more clearly. In The Art of Logic, Royal Society Science Book Prize nominee Eugenia Cheng shows how anyone can think like a mathematician - and see, argue and think better.
Learn how to simplify complex decisions without over-simplifying them. Discover the power of analogies and the dangers of false equivalences. Find out how people construct misleading arguments, and how we can argue back.
Eugenia Cheng teaches us how to find clarity without losing nuance, taking a careful scalpel to the complexities of politics, privilege, sexism and dozens of other real-world situations. Her Art of Logic is a practical and inspiring guide to decoding the modern world.
Fuzzy logic, which is based on the concept of fuzzy set, has
enabled scientists to create models under conditions of
imprecision, vagueness, or both at once. As a result, it has now
found many important applications in almost all sectors of human
activity, becoming a complementary feature and supporter of
probability theory, which is suitable for modelling situations of
uncertainty derived from randomness. Fuzzy mathematics has also
significantly developed at the theoretical level, providing
important insights into branches of traditional mathematics like
algebra, analysis, geometry, topology, and more. With such
widespread applications, fuzzy sets and logic are an important area
of focus in mathematics. Advances and Applications of Fuzzy Sets
and Logic studies recent theoretical advances of fuzzy sets and
numbers, fuzzy systems, fuzzy logic and their generalizations,
extensions, and more. This book also explores the applications of
fuzzy sets and logic applied to science, technology, and everyday
life to further provide research on the subject. This book is ideal
for mathematicians, physicists, computer specialists, engineers,
practitioners, researchers, academicians, and students who are
looking to learn more about fuzzy sets, fuzzy logic, and their
applications.
Calculi of temporal logic are widely used in modern computer
science. The temporal organization of information flows in the
different architectures of laptops, the Internet, or supercomputers
would not be possible without appropriate temporal calculi. In the
age of digitalization and High-Tech applications, people are often
not aware that temporal logic is deeply rooted in the philosophy of
modalities. A deep understanding of these roots opens avenues to
the modern calculi of temporal logic which have emerged by
extension of modal logic with temporal operators. Computationally,
temporal operators can be introduced in different formalisms with
increasing complexity such as Basic Modal Logic (BML), Linear-Time
Temporal Logic (LTL), Computation Tree Logic (CTL), and Full
Computation Tree Logic (CTL*). Proof-theoretically, these
formalisms of temporal logic can be interpreted by the sequent
calculus of Gentzen, the tableau-based calculus, automata-based
calculus, game-based calculus, and dialogue-based calculus with
different advantages for different purposes, especially in computer
science.The book culminates in an outlook on trendsetting
applications of temporal logics in future technologies such as
artificial intelligence and quantum technology. However, it will
not be sufficient, as in traditional temporal logic, to start from
the everyday understanding of time. Since the 20th century, physics
has fundamentally changed the modern understanding of time, which
now also determines technology. In temporal logic, we are only just
beginning to grasp these differences in proof theory which needs
interdisciplinary cooperation of proof theory, computer science,
physics, technology, and philosophy.
Calculus for Engineering Students: Fundamentals, Real Problems, and
Computers insists that mathematics cannot be separated from
chemistry, mechanics, electricity, electronics, automation, and
other disciplines. It emphasizes interdisciplinary problems as a
way to show the importance of calculus in engineering tasks and
problems. While concentrating on actual problems instead of theory,
the book uses Computer Algebra Systems (CAS) to help students
incorporate lessons into their own studies. Assuming a working
familiarity with calculus concepts, the book provides a hands-on
opportunity for students to increase their calculus and mathematics
skills while also learning about engineering applications.
In the world of mathematics, the study of fuzzy relations and its
theories are well-documented and a staple in the area of
calculative methods. What many researchers and scientists overlook
is how fuzzy theory can be applied to industries outside of
arithmetic. The framework of fuzzy logic is much broader than
professionals realize. There is a lack of research on the full
potential this theoretical model can reach. Emerging Applications
of Fuzzy Algebraic Structures provides emerging research exploring
the theoretical and practical aspects of fuzzy set theory and its
real-life applications within the fields of engineering and
science. Featuring coverage on a broad range of topics such as
complex systems, topological spaces, and linear transformations,
this book is ideally designed for academicians, professionals, and
students seeking current research on innovations in fuzzy logic in
algebra and other matrices.
This book is the second of a three-volume set of books on the
theory of algebras, a study that provides a consistent framework
for understanding algebraic systems, including groups, rings,
modules, semigroups and lattices. Volume I, first published in the
1980s, built the foundations of the theory and is considered to be
a classic in this field. The long-awaited volumes II and III are
now available. Taken together, the three volumes provide a
comprehensive picture of the state of art in general algebra today,
and serve as a valuable resource for anyone working in the general
theory of algebraic systems or in related fields. The two new
volumes are arranged around six themes first introduced in Volume
I. Volume II covers the Classification of Varieties, Equational
Logic, and Rudiments of Model Theory, and Volume III covers Finite
Algebras and their Clones, Abstract Clone Theory, and the
Commutator. These topics are presented in six chapters with
independent expositions, but are linked by themes and motifs that
run through all three volumes.
Medical imaging is one of the heaviest funded biomedical
engineering research areas. The second edition of Pattern
Recognition and Signal Analysis in Medical Imaging brings sharp
focus to the development of integrated systems for use in the
clinical sector, enabling both imaging and the automatic assessment
of the resultant data. Since the first edition, there has been
tremendous development of new, powerful technologies for detecting,
storing, transmitting, analyzing, and displaying medical images.
Computer-aided analytical techniques, coupled with a continuing
need to derive more information from medical images, has led to a
growing application of digital processing techniques in cancer
detection as well as elsewhere in medicine. This book is an
essential tool for students and professionals, compiling and
explaining proven and cutting-edge methods in pattern recognition
for medical imaging.
Succinct and understandable, this book is a step-by-step guide to
the mathematics and construction of electrical load forecasting
models. Written by one of the world's foremost experts on the
subject, Electrical Load Forecasting provides a brief discussion of
algorithms, their advantages and disadvantages and when they are
best utilized. The book begins with a good description of the basic
theory and models needed to truly understand how the models are
prepared so that they are not just blindly plugging and chugging
numbers. This is followed by a clear and rigorous exposition of the
statistical techniques and algorithms such as regression, neural
networks, fuzzy logic, and expert systems. The book is also
supported by an online computer program that allows readers to
construct, validate, and run short and long term models.
|
|