![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Mathematical foundations > Mathematical logic
This is a reproduction of a book published before 1923. This book may have occasional imperfections such as missing or blurred pages, poor pictures, errant marks, etc. that were either part of the original artifact, or were introduced by the scanning process. We believe this work is culturally important, and despite the imperfections, have elected to bring it back into print as part of our continuing commitment to the preservation of printed works worldwide. We appreciate your understanding of the imperfections in the preservation process, and hope you enjoy this valuable book. ++++ The below data was compiled from various identification fields in the bibliographic record of this title. This data is provided as an additional tool in helping to ensure edition identification: ++++ Principia Mathematica, Volume 2; Principia Mathematica; Bertrand Russell Alfred North Whitehead, Bertrand Russell University Press, 1912 Logic, Symbolic and mathematical; Mathematics
This is a reproduction of a book published before 1923. This book may have occasional imperfections such as missing or blurred pages, poor pictures, errant marks, etc. that were either part of the original artifact, or were introduced by the scanning process. We believe this work is culturally important, and despite the imperfections, have elected to bring it back into print as part of our continuing commitment to the preservation of printed works worldwide. We appreciate your understanding of the imperfections in the preservation process, and hope you enjoy this valuable book. ++++ The below data was compiled from various identification fields in the bibliographic record of this title. This data is provided as an additional tool in helping to ensure edition identification: ++++ Principia Mathematica, Volume 2; Principia Mathematica; Bertrand Russell Alfred North Whitehead, Bertrand Russell University Press, 1912 Logic, Symbolic and mathematical; Mathematics
This volume is number five in the 11-volume "Handbook of the
History of Logic." It covers the first 50 years of the development
of mathematical logic in the 20th century, and concentrates on the
achievements of the great names of the period--Russell, Post,
Godel, Tarski, Church, and the like. This was the period in which
mathematical logic gave mature expression to its four main parts:
set theory, model theory, proof theory and recursion theory.
Collectively, this work ranks as one of the greatest achievements
of our intellectual history. Written by leading researchers in the
field, both this volume and the Handbook as a whole are definitive
reference tools for senior undergraduates, graduate students and
researchers in the history of logic, the history of philosophy, and
any discipline, such as mathematics, computer science, and
artificial intelligence, for whom the historical background of his
or her work is a salient consideration.
This book gives a rigorous yet physics focused introduction to mathematical logic that is geared towards natural science majors. We present the science major with a robust introduction to logic, focusing on the specific knowledge and skills that will unavoidably be needed in calculus topics and natural science topics in general rather than taking a philosophical-math-fundamental oriented approach that is commonly found in mathematical logic textbooks.
Assuming no previous study in logic, this informal yet rigorous text covers the material of a standard undergraduate first course in mathematical logic, using natural deduction and leading up to the completeness theorem for first-order logic. At each stage of the text, the reader is given an intuition based on standard mathematical practice, which is subsequently developed with clean formal mathematics. Alongside the practical examples, readers learn what can and can't be calculated; for example the correctness of a derivation proving a given sequent can be tested mechanically, but there is no general mechanical test for the existence of a derivation proving the given sequent. The undecidability results are proved rigorously in an optional final chapter, assuming Matiyasevich's theorem characterising the computably enumerable relations. Rigorous proofs of the adequacy and completeness proofs of the relevant logics are provided, with careful attention to the languages involved. Optional sections discuss the classification of mathematical structures by first-order theories; the required theory of cardinality is developed from scratch. Throughout the book there are notes on historical aspects of the material, and connections with linguistics and computer science, and the discussion of syntax and semantics is influenced by modern linguistic approaches. Two basic themes in recent cognitive science studies of actual human reasoning are also introduced. Including extensive exercises and selected solutions, this text is ideal for students in logic, mathematics, philosophy, and computer science.
Nonstandard models of arithmetic are of interest to mathematicians through the presence of infinite (or nonstandard) integers and the various properties they inherit from the finite integers. Since their introduction in the 1930s (by Skolem and Goedel ), they have come to play an important role in model theory, and in combinatorics through independence results such as the Paris-Harrington theorem. This book is an introduction to these developments, and stresses the interplay between the first-order theory, recursion-theoretic aspects, and the structural properties of these models. Prerequisites have been kept to a minimum. A basic grounding in elementary model theory and a familiarity with the notions of recursive, primitive recursive, and r.e. sets will be sufficient. Consequently, the book should be suitable for postgraduate students coming to the subject for the first time and a variety of exercises of varying degrees of difficulty will help to further the reader's understanding. Beginning with Goedel's incompleteness theorem, the book covers the prime models, cofinal extensions, end extensions, Gaifman's construction of a definable type, Tennenbaum's theorem, Friedman's theorem and subsequent work on indicators, and culminates in a chapter on recursive saturation and resplendency.
What link might connect two far worlds like quantum theory and music? There is something universal in the mathematical formalism of quantum theory that goes beyond the limits of its traditional physical applications. We are now beginning to understand how some mysterious quantum concepts, like superposition and entanglement, can be used as a semantic resource.
Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of neutralities as well as their interactions with different ideational spectra. In all classical algebraic structures, the law of compositions on a given set are well-defined, but this is a restrictive case because there are situations in science where a law of composition defined on a set may be only partially defined and partially undefined, which we call NeutroDefined, or totally undefined, which we call AntiDefined. Theory and Applications of NeutroAlgebras as Generalizations of Classical Algebra introduces NeutroAlgebra, an emerging field of research. This book provides a comprehensive collection of original work related to NeutroAlgebra and covers topics such as image retrieval, mathematical morphology, and NeutroAlgebraic structure. It is an essential resource for philosophers, mathematicians, researchers, educators and students of higher education, and academicians.
This book is the third of a three-volume set of books on the theory of algebras, a study that provides a consistent framework for understanding algebraic systems, including groups, rings, modules, semigroups and lattices. Volume I, first published in the 1980s, built the foundations of the theory and is considered to be a classic in this field. The long-awaited volumes II and III are now available. Taken together, the three volumes provide a comprehensive picture of the state of art in general algebra today, and serve as a valuable resource for anyone working in the general theory of algebraic systems or in related fields. The two new volumes are arranged around six themes first introduced in Volume I. Volume II covers the Classification of Varieties, Equational Logic, and Rudiments of Model Theory, and Volume III covers Finite Algebras and their Clones, Abstract Clone Theory, and the Commutator. These topics are presented in six chapters with independent expositions, but are linked by themes and motifs that run through all three volumes.
Fuzzy logic, which is based on the concept of fuzzy set, has enabled scientists to create models under conditions of imprecision, vagueness, or both at once. As a result, it has now found many important applications in almost all sectors of human activity, becoming a complementary feature and supporter of probability theory, which is suitable for modelling situations of uncertainty derived from randomness. Fuzzy mathematics has also significantly developed at the theoretical level, providing important insights into branches of traditional mathematics like algebra, analysis, geometry, topology, and more. With such widespread applications, fuzzy sets and logic are an important area of focus in mathematics. Advances and Applications of Fuzzy Sets and Logic studies recent theoretical advances of fuzzy sets and numbers, fuzzy systems, fuzzy logic and their generalizations, extensions, and more. This book also explores the applications of fuzzy sets and logic applied to science, technology, and everyday life to further provide research on the subject. This book is ideal for mathematicians, physicists, computer specialists, engineers, practitioners, researchers, academicians, and students who are looking to learn more about fuzzy sets, fuzzy logic, and their applications.
Analysis and Synthesis of Singular Systems provides a base for further theoretical research and a design guide for engineering applications of singular systems. The book presents recent advances in analysis and synthesis problems, including state-feedback control, static output feedback control, filtering, dissipative control, H8 control, reliable control, sliding mode control and fuzzy control for linear singular systems and nonlinear singular systems. Less conservative and fresh novel techniques, combined with the linear matrix inequality (LMI) technique, the slack matrix method, and the reciprocally convex combination approach are applied to singular systems. This book will be of interest to academic researchers, postgraduate and undergraduate students working in control theory and singular systems.
Calculus for Engineering Students: Fundamentals, Real Problems, and Computers insists that mathematics cannot be separated from chemistry, mechanics, electricity, electronics, automation, and other disciplines. It emphasizes interdisciplinary problems as a way to show the importance of calculus in engineering tasks and problems. While concentrating on actual problems instead of theory, the book uses Computer Algebra Systems (CAS) to help students incorporate lessons into their own studies. Assuming a working familiarity with calculus concepts, the book provides a hands-on opportunity for students to increase their calculus and mathematics skills while also learning about engineering applications.
In the world of mathematics, the study of fuzzy relations and its theories are well-documented and a staple in the area of calculative methods. What many researchers and scientists overlook is how fuzzy theory can be applied to industries outside of arithmetic. The framework of fuzzy logic is much broader than professionals realize. There is a lack of research on the full potential this theoretical model can reach. Emerging Applications of Fuzzy Algebraic Structures provides emerging research exploring the theoretical and practical aspects of fuzzy set theory and its real-life applications within the fields of engineering and science. Featuring coverage on a broad range of topics such as complex systems, topological spaces, and linear transformations, this book is ideally designed for academicians, professionals, and students seeking current research on innovations in fuzzy logic in algebra and other matrices.
The overall topic of the volume, Mathematics for Computation (M4C), is mathematics taking crucially into account the aspect of computation, investigating the interaction of mathematics with computation, bridging the gap between mathematics and computation wherever desirable and possible, and otherwise explaining why not.Recently, abstract mathematics has proved to have more computational content than ever expected. Indeed, the axiomatic method, originally intended to do away with concrete computations, seems to suit surprisingly well the programs-from-proofs paradigm, with abstraction helping not only clarity but also efficiency.Unlike computational mathematics, which rather focusses on objects of computational nature such as algorithms, the scope of M4C generally encompasses all the mathematics, including abstract concepts such as functions. The purpose of M4C actually is a strongly theory-based and therefore, is a more reliable and sustainable approach to actual computation, up to the systematic development of verified software.While M4C is situated within mathematical logic and the related area of theoretical computer science, in principle it involves all branches of mathematics, especially those which prompt computational considerations. In traditional terms, the topics of M4C include proof theory, constructive mathematics, complexity theory, reverse mathematics, type theory, category theory and domain theory.The aim of this volume is to provide a point of reference by presenting up-to-date contributions by some of the most active scholars in each field. A variety of approaches and techniques are represented to give as wide a view as possible and promote cross-fertilization between different styles and traditions.
Calculi of temporal logic are widely used in modern computer science. The temporal organization of information flows in the different architectures of laptops, the Internet, or supercomputers would not be possible without appropriate temporal calculi. In the age of digitalization and High-Tech applications, people are often not aware that temporal logic is deeply rooted in the philosophy of modalities. A deep understanding of these roots opens avenues to the modern calculi of temporal logic which have emerged by extension of modal logic with temporal operators. Computationally, temporal operators can be introduced in different formalisms with increasing complexity such as Basic Modal Logic (BML), Linear-Time Temporal Logic (LTL), Computation Tree Logic (CTL), and Full Computation Tree Logic (CTL*). Proof-theoretically, these formalisms of temporal logic can be interpreted by the sequent calculus of Gentzen, the tableau-based calculus, automata-based calculus, game-based calculus, and dialogue-based calculus with different advantages for different purposes, especially in computer science.The book culminates in an outlook on trendsetting applications of temporal logics in future technologies such as artificial intelligence and quantum technology. However, it will not be sufficient, as in traditional temporal logic, to start from the everyday understanding of time. Since the 20th century, physics has fundamentally changed the modern understanding of time, which now also determines technology. In temporal logic, we are only just beginning to grasp these differences in proof theory which needs interdisciplinary cooperation of proof theory, computer science, physics, technology, and philosophy.
Assuming no previous study in logic, this informal yet rigorous text covers the material of a standard undergraduate first course in mathematical logic, using natural deduction and leading up to the completeness theorem for first-order logic. At each stage of the text, the reader is given an intuition based on standard mathematical practice, which is subsequently developed with clean formal mathematics. Alongside the practical examples, readers learn what can and can't be calculated; for example the correctness of a derivation proving a given sequent can be tested mechanically, but there is no general mechanical test for the existence of a derivation proving the given sequent. The undecidability results are proved rigorously in an optional final chapter, assuming Matiyasevich's theorem characterising the computably enumerable relations. Rigorous proofs of the adequacy and completeness proofs of the relevant logics are provided, with careful attention to the languages involved. Optional sections discuss the classification of mathematical structures by first-order theories; the required theory of cardinality is developed from scratch. Throughout the book there are notes on historical aspects of the material, and connections with linguistics and computer science, and the discussion of syntax and semantics is influenced by modern linguistic approaches. Two basic themes in recent cognitive science studies of actual human reasoning are also introduced. Including extensive exercises and selected solutions, this text is ideal for students in Logic, Mathematics, Philosophy, and Computer Science.
Succinct and understandable, this book is a step-by-step guide to the mathematics and construction of electrical load forecasting models. Written by one of the world's foremost experts on the subject, Electrical Load Forecasting provides a brief discussion of algorithms, their advantages and disadvantages and when they are best utilized. The book begins with a good description of the basic theory and models needed to truly understand how the models are prepared so that they are not just blindly plugging and chugging numbers. This is followed by a clear and rigorous exposition of the statistical techniques and algorithms such as regression, neural networks, fuzzy logic, and expert systems. The book is also supported by an online computer program that allows readers to construct, validate, and run short and long term models.
Medical imaging is one of the heaviest funded biomedical engineering research areas. The second edition of Pattern Recognition and Signal Analysis in Medical Imaging brings sharp focus to the development of integrated systems for use in the clinical sector, enabling both imaging and the automatic assessment of the resultant data. Since the first edition, there has been tremendous development of new, powerful technologies for detecting, storing, transmitting, analyzing, and displaying medical images. Computer-aided analytical techniques, coupled with a continuing need to derive more information from medical images, has led to a growing application of digital processing techniques in cancer detection as well as elsewhere in medicine. This book is an essential tool for students and professionals, compiling and explaining proven and cutting-edge methods in pattern recognition for medical imaging. |
You may like...
Stochastic Transport in Upper Ocean…
Bertrand Chapron, Dan Crisan, …
Hardcover
R1,560
Discovery Miles 15 600
Handbook of Modern Coating Technologies…
Mahmood Aliofkhazraei, Ali Nasar, …
Hardcover
R3,976
Discovery Miles 39 760
3D Imaging for Safety and Security
Andreas Koschan, Marc Pollefeys, …
Hardcover
R1,455
Discovery Miles 14 550
|