![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Mathematical foundations > Mathematical logic
Fuzzy logic techniques have had extraordinary growth in various engineering systems. The developments in engineering sciences have caused apprehension in modern years due to high-tech industrial processes with ever-increasing levels of complexity. Advanced Fuzzy Logic Approaches in Engineering Science provides innovative insights into a comprehensive range of soft fuzzy logic techniques applied in various fields of engineering problems like fuzzy sets theory, adaptive neuro fuzzy inference system, and hybrid fuzzy logic genetic algorithms belief networks in industrial and engineering settings. The content within this publication represents the work of particle swarms, fuzzy computing, and rough sets. It is a vital reference source for engineers, research scientists, academicians, and graduate-level students seeking coverage on topics centered on the applications of fuzzy logic in high-tech industrial processes.
Boolean valued analysis is a technique for studying properties of an arbitrary mathematical object by comparing its representations in two different set-theoretic models whose construction utilises principally distinct Boolean algebras. The use of two models for studying a single object is a characteristic of the so-called non-standard methods of analysis. Application of Boolean valued models to problems of analysis rests ultimately on the procedures of ascending and descending, the two natural functors acting between a new Boolean valued universe and the von Neumann universe. This book demonstrates the main advantages of Boolean valued analysis which provides the tools for transforming, for example, function spaces to subsets of the reals, operators to functionals, and vector-functions to numerical mappings. Boolean valued representations of algebraic systems, Banach spaces, and involutive algebras are examined thoroughly. Audience: This volume is intended for classical analysts seeking new tools, and for model theorists in search of challenging applications of nonstandard models.
Many years of practical experience in teaching discrete mathematics form the basis of this text book. Part I contains problems on such topics as Boolean algebra, k-valued logics, graphs and networks, elements of coding theory, automata theory, algorithms theory, combinatorics, Boolean minimization and logical design. The exercises are preceded by ample theoretical background material. For further study the reader is referred to the extensive bibliography. Part II follows the same structure as Part I, and gives helpful hints and solutions. Audience: This book will be of great value to undergraduate students of discrete mathematics, whereas the more difficult exercises, which comprise about one-third of the material, will also appeal to postgraduates and researchers.
Fundamentals of Fuzzy Sets covers the basic elements of fuzzy set theory. Its four-part organization provides easy referencing of recent as well as older results in the field. The first part discusses the historical emergence of fuzzy sets, and delves into fuzzy set connectives, and the representation and measurement of membership functions. The second part covers fuzzy relations, including orderings, similarity, and relational equations. The third part, devoted to uncertainty modelling, introduces possibility theory, contrasting and relating it with probabilities, and reviews information measures of specificity and fuzziness. The last part concerns fuzzy sets on the real line - computation with fuzzy intervals, metric topology of fuzzy numbers, and the calculus of fuzzy-valued functions. Each chapter is written by one or more recognized specialists and offers a tutorial introduction to the topics, together with an extensive bibliography.
The main characteristics of the real-world decision-making problems facing humans today are multidimensional and have multiple objectives including eco nomic, environmental, social, and technical ones. Hence, it seems natural that the consideration of many objectives in the actual decision-making process re quires multiobjective approaches rather than single-objective. One ofthe major systems-analytic multiobjective approaches to decision-making under constraints is multiobjective optimization as a generalization of traditional single-objective optimization. Although multiobjective optimization problems differ from single objective optimization problems only in the plurality of objective functions, it is significant to realize that multiple objectives are often noncom mensurable and conflict with each other in multiobjective optimization problems. With this ob servation, in multiobjective optimization, the notion of Pareto optimality or effi ciency has been introduced instead of the optimality concept for single-objective optimization. However, decisions with Pareto optimality or efficiency are not uniquely determined; the final decision must be selected from among the set of Pareto optimal or efficient solutions. Therefore, the question is, how does one find the preferred point as a compromise or satisficing solution with rational pro cedure? This is the starting point of multiobjective optimization. To be more specific, the aim is to determine how one derives a compromise or satisficing so lution of a decision maker (DM), which well represents the subjective judgments, from a Pareto optimal or an efficient solution set."
This volume contains the proceedings of the conference Logical Foundations of Mathematics, Computer Science, and Physics-Kurt Godel's Legacy, held in Brno, Czech Republic on the 90th anniversary of his birth. The wide and continuing importance of Godel s work in the logical foundations of mathematics, computer science, and physics is confirmed by the broad range of speakers who participated in making this gathering a scientific event.
First published in 2000. Routledge is an imprint of Taylor & Francis, an informa company.
In 1907 Luitzen Egbertus Jan Brouwer defended his doctoral dissertation on the foundations of mathematics and with this event the modem version of mathematical intuitionism came into being. Brouwer attacked the main currents of the philosophy of mathematics: the formalists and the Platonists. In tum, both these schools began viewing intuitionism as the most harmful party among all known philosophies of mathematics. That was the origin of the now-90-year-old debate over intuitionism. As both sides have appealed in their arguments to philosophical propositions, the discussions have attracted the attention of philosophers as well. One might ask here what role a philosopher can play in controversies over mathematical intuitionism. Can he reasonably enter into disputes among mathematicians? I believe that these disputes call for intervention by a philo sopher. The three best-known arguments for intuitionism, those of Brouwer, Heyting and Dummett, are based on ontological and epistemological claims, or appeal to theses that properly belong to a theory of meaning. Those lines of argument should be investigated in order to find what their assumptions are, whether intuitionistic consequences really follow from those assumptions, and finally, whether the premises are sound and not absurd. The intention of this book is thus to consider seriously the arguments of mathematicians, even if philosophy was not their main field of interest. There is little sense in disputing whether what mathematicians said about the objectivity and reality of mathematical facts belongs to philosophy, or not."
This monograph is the r st in Fuzzy Approximation Theory. It contains mostly the author s research work on fuzziness of the last ten years and relies a lot on [10]-[32] and it is a natural outgrowth of them. It belongs to the broader area of Fuzzy Mathematics. Chapters are self-contained and several advanced courses can be taught out of this book. We provide lots of applications but always within the framework of Fuzzy Mathematics. In each chapter is given background and motivations. A c- plete list of references is provided at the end. The topics covered are very diverse. In Chapter 1 we give an extensive basic background on Fuzziness and Fuzzy Real Analysis, as well a complete description of the book. In the following Chapters 2,3 we cover in deep Fuzzy Di?erentiation and Integ- tion Theory, e.g. we present Fuzzy Taylor Formulae. It follows Chapter 4 on Fuzzy Ostrowski Inequalities. Then in Chapters 5, 6 we present results on classical algebraic and trigonometric polynomial Fuzzy Approximation.
The nationwide research project Deduktion', funded by the Deutsche Forschungsgemeinschaft (DFG)' for a period of six years, brought together almost all research groups within Germany engaged in the field of automated reasoning. Intensive cooperation and exchange of ideas led to considerable progress both in the theoretical foundations and in the application of deductive knowledge. This three-volume book covers these original contributions moulded into the state of the art of automated deduction. The three volumes are intended to document and advance a development in the field of automated deduction that can now be observed all over the world. Rather than restricting the interest to purely academic research, the focus now is on the investigation of problems derived from realistic applications. In fact industrial applications are already pursued on a trial basis. In consequence the emphasis of the volumes is not on the presentation of the theoretical foundations of logical deduction as such, as in a handbook; rather the books present the concepts and methods now available in automated deduction in a form which can be easily accessed by scientists working in applications outside of the field of deduction. This reflects the strong conviction that automated deduction is on the verge of being fully included in the evolution of technology. Volume I focuses on basic research in deduction and on the knowledge on which modern deductive systems are based. Volume II presents techniques of implementation and details about system building. Volume III deals with applications of deductive techniques mainly, but not exclusively, to mathematics and the verification of software. Each chapter was read bytwo referees, one an international expert from abroad and the other a knowledgeable participant in the national project. It has been accepted for inclusion on the basis of these review reports. Audience: Researchers and developers in software engineering, formal methods, certification, verification, validation, specification of complex systems and software, expert systems, natural language processing.
The nationwide research project `Deduktion', funded by the `Deutsche Forschungsgemeinschaft (DFG)' for a period of six years, brought together almost all research groups within Germany engaged in the field of automated reasoning. Intensive cooperation and exchange of ideas led to considerable progress both in the theoretical foundations and in the application of deductive knowledge. This three-volume book covers these original contributions moulded into the state of the art of automated deduction. The three volumes are intended to document and advance a development in the field of automated deduction that can now be observed all over the world. Rather than restricting the interest to purely academic research, the focus now is on the investigation of problems derived from realistic applications. In fact industrial applications are already pursued on a trial basis. In consequence the emphasis of the volumes is not on the presentation of the theoretical foundations of logical deduction as such, as in a handbook; rather the books present the concepts and methods now available in automated deduction in a form which can be easily accessed by scientists working in applications outside of the field of deduction. This reflects the strong conviction that automated deduction is on the verge of being fully included in the evolution of technology. Volume I focuses on basic research in deduction and on the knowledge on which modern deductive systems are based. Volume II presents techniques of implementation and details about system building. Volume III deals with applications of deductive techniques mainly, but not exclusively, to mathematics and the verification of software. Each chapter was read by two referees, one an international expert from abroad and the other a knowledgeable participant in the national project. It has been accepted for inclusion on the basis of these review reports. Audience: Researchers and developers in software engineering, formal methods, certification, verification, validation, specification of complex systems and software, expert systems, natural language processing.
Through three editions, Cryptography: Theory and Practice, has been embraced by instructors and students alike. It offers a comprehensive primer for the subject's fundamentals while presenting the most current advances in cryptography. The authors offer comprehensive, in-depth treatment of the methods and protocols that are vital to safeguarding the seemingly infinite and increasing amount of information circulating around the world. Key Features of the Fourth Edition: New chapter on the exciting, emerging new area of post-quantum cryptography (Chapter 9). New high-level, nontechnical overview of the goals and tools of cryptography (Chapter 1). New mathematical appendix that summarizes definitions and main results on number theory and algebra (Appendix A). An expanded treatment of stream ciphers, including common design techniques along with coverage of Trivium. Interesting attacks on cryptosystems, including: padding oracle attack correlation attacks and algebraic attacks on stream ciphers attack on the DUAL-EC random bit generator that makes use of a trapdoor. A treatment of the sponge construction for hash functions and its use in the new SHA-3 hash standard. Methods of key distribution in sensor networks. The basics of visual cryptography, allowing a secure method to split a secret visual message into pieces (shares) that can later be combined to reconstruct the secret. The fundamental techniques cryptocurrencies, as used in Bitcoin and blockchain. The basics of the new methods employed in messaging protocols such as Signal, including deniability and Diffie-Hellman key ratcheting.
At the beginning of the new millennium, fuzzy logic opens a new challenging perspective in information processing. This perspective emerges out of the ideas of the founder of fuzzy logic - Lotfi Zadeh, to develop 'soft' tools for direct computing with human perceptions. The enigmatic nature of human perceptions manifests in their unique capacity to generalize, extract patterns and capture both the essence and the integrity of the events and phenomena in human life. This capacity goes together with an intrinsic imprecision of the perception-based information. According to Zadeh, it is because of the imprecision of the human imprecision that they do not lend themselves to meaning representation through the use of precise methods based on predicate logic. This is the principal reason why existing scientific theories do not have the capability to operate on perception-based information. We are at the eve of the emergence of a theory with such a capability. Its applicative effectiveness has been already demonstrated through the industrial implementation of the soft computing - a powerful intelligent technology centred in fuzzy logic. At the focus of the papers included in this book is the knowledge and experience of the researchers in relation both to the engineering applications of soft computing and to its social and philosophical implications at the dawn of the third millennium. The papers clearly demonstrate that Fuzzy Logic revolutionizes general approaches for solving applied problems and reveals deep connections between them and their solutions.
Algorithmic Information Theory treats the mathematics of many important areas in digital information processing. It has been written as a read-and-learn book on concrete mathematics, for teachers, students and practitioners in electronic engineering, computer science and mathematics. The presentation is dense, and the examples and exercises are numerous. It is based on lectures on information technology (Data Compaction, Cryptography, Polynomial Coding) for engineers.
Stig Kanger (1924-1988) made important contributions to logic and formal philosophy. Kanger's dissertation Provability in Logic, 1957, contained significant results in proof theory as well as the first fully worked out model-theoretic interpretation of quantified modal logic. It is generally accepted nowadays that Kanger was one of the originators of possible worlds semantics for modal logic. Kanger's most original achievements were in the areas of general proof theory, the semantics of modal and deontic logic, and the logical analysis of the concept of rights. He also contributed to action theory, preference logic, and the theory of measurement. This is the first of two volumes dedicated to the work of Stig Kanger. The present volume is a complete collection of Kanger's philosophical papers. The second volume contains critical essays on Kanger's work, as well as biographical essays on Kanger written by colleagues and friends.
Simplicity theory is an extension of stability theory to a wider class of structures, containing, among others, the random graph, pseudo-finite fields, and fields with a generic automorphism. Following Kim's proof of forking symmetry' which implies a good behaviour of model-theoretic independence, this area of model theory has been a field of intense study. It has necessitated the development of some important new tools, most notably the model-theoretic treatment of hyperimaginaries (classes modulo type-definable equivalence relations). It thus provides a general notion of independence (and of rank in the supersimple case) applicable to a wide class of algebraic structures. The basic theory of forking independence is developed, and its properties in a simple structure are analyzed. No prior knowledge of stability theory is assumed; in fact many stability-theoretic results follow either from more general propositions, or are developed in side remarks. Audience: This book is intended both as an introduction to simplicity theory accessible to graduate students with some knowledge of model theory, and as a reference work for research in the field.
This monograph looks at causal nets from a philosophical point of view. The author shows that one can build a general philosophical theory of causation on the basis of the causal nets framework that can be fruitfully used to shed new light on philosophical issues. Coverage includes both a theoretical as well as application-oriented approach to the subject. The author first counters David Hume's challenge about whether causation is something ontologically real. The idea behind this is that good metaphysical concepts should behave analogously to good theoretical concepts in scientific theories. In the process, the author offers support for the theory of causal nets as indeed being a correct theory of causation. Next, the book offers an application-oriented approach to the subject. The author shows that causal nets can investigate philosophical issues related to causation. He does this by means of two exemplary applications. The first consists of an evaluation of Jim Woodward's interventionist theory of causation. The second offers a contribution to the new mechanist debate. Introductory chapters outline all the formal basics required. This helps make the book useful for those who are not familiar with causal nets, but interested in causation or in tools for the investigation of philosophical issues related to causation.
Logic plays a central conceptual role in modern mathematics. However, mathematical logic has grown into one of the most recondite areas of mathematics. As a result, most of modern logic is inaccessible to all but the specialist. This new book is a resource that provides a quick introduction and review of the key topics in logic for the computer scientist, engineer, or mathematician. Handbook of Logic and Proof Techniques for Computer Science presents the elements of modern logic, including many current topics, to the reader having only basic mathematical literacy. Computer scientists will find specific examples and important ideas such as axiomatics, recursion theory, decidability, independence, completeness, consistency, model theory, and P/NP completeness. The book contains definitions, examples and discussion of all of the key ideas in basic logic, but also makes a special effort to cut through the mathematical formalism, difficult notation, and esoteric terminology that is typical of modern mathematical logic. T This handbook delivers cogent and self-contained introductions to critical advanced topics, including: * Godels completeness and incompleteness theorems * Methods of proof, cardinal and ordinal numbers, the continuum hypothesis, the axiom of choice, model theory, and number systems and their construction * Extensive treatment of complexity theory and programming applications * Applications to algorithms in Boolean algebra * Discussion of set theory and applications of logic The book is an excellent resource for the working mathematical scientist. The graduate student or professional in computer science and engineering or the systems scientist whoneeds to have a quick sketch of a key idea from logic will find it here in this self-contained, accessible, and easy-to-use reference.
1. The ?rst edition of this book was published in 1977. The text has been well received and is still used, although it has been out of print for some time. In the intervening three decades, a lot of interesting things have happened to mathematical logic: (i) Model theory has shown that insights acquired in the study of formal languages could be used fruitfully in solving old problems of conventional mathematics. (ii) Mathematics has been and is moving with growing acceleration from the set-theoretic language of structures to the language and intuition of (higher) categories, leaving behind old concerns about in?nities: a new view of foundations is now emerging. (iii) Computer science, a no-nonsense child of the abstract computability theory, has been creatively dealing with old challenges and providing new ones, such as the P/NP problem. Planning additional chapters for this second edition, I have decided to focus onmodeltheory, the conspicuousabsenceofwhichinthe ?rsteditionwasnoted in several reviews, and the theory of computation, including its categorical and quantum aspects. The whole Part IV: Model Theory, is new. I am very grateful to Boris I. Zilber, who kindly agreed to write it. It may be read directly after Chapter II. The contents of the ?rst edition are basically reproduced here as Chapters I-VIII. Section IV.7, on the cardinality of the continuum, is completed by Section IV.7.3, discussing H. Woodin's discovery.
This contributed volume collects papers related to the Logic in Question workshop, which has taken place annually at Sorbonne University in Paris since 2011. Each year, the workshop brings together historians, philosophers, mathematicians, linguists, and computer scientists to explore questions related to the nature of logic and how it has developed over the years. As a result, chapter authors provide a thorough, interdisciplinary exploration of topics that have been studied in the workshop. Organized into three sections, the first part of the book focuses on historical questions related to logic, the second explores philosophical questions, and the third section is dedicated to mathematical discussions. Specific topics include: * logic and analogy* Chinese logic* nineteenth century British logic (in particular Boole and Lewis Carroll)* logical diagrams * the place and value of logic in Louis Couturat's philosophical thinking* contributions of logical analysis for mathematics education* the exceptionality of logic* the logical expressive power of natural languages* the unification of mathematics via topos theory Logic in Question will appeal to pure logicians, historians of logic, philosophers, linguists, and other researchers interested in the history of logic, making this volume a unique and valuable contribution to the field.
Proof theory and category theory were first drawn together by Lambek some 30 years ago but, until now, the most fundamental notions of category theory (as opposed to their embodiments in logic) have not been explained systematically in terms of proof theory. Here it is shown that these notions, in particular the notion of adjunction, can be formulated in such as way as to be characterised by composition elimination. Among the benefits of these composition-free formulations are syntactical and simple model-theoretical, geometrical decision procedures for the commuting of diagrams of arrows. Composition elimination, in the form of Gentzen's cut elimination, takes in categories, and techniques inspired by Gentzen are shown to work even better in a purely categorical context than in logic. An acquaintance with the basic ideas of general proof theory is relied on only for the sake of motivation, however, and the treatment of matters related to categories is also in general self contained. Besides familiar topics, presented in a novel, simple way, the monograph also contains new results. It can be used as an introductory text in categorical proof theory.
Arising from the 1996 Cape Town conference in honour of the mathematician Bernhard Banaschewski, this collection of 30 refereed papers represents current developments in category theory, topology, topos theory, universal algebra, model theory, and diverse ordered and algebraic structures. Banaschewski's influence is reflected here, particularly in the contributions to pointfree topology at the levels of nearness, uniformity, and asymmetry. The unifying theme of the volume is the application of categorical methods. The contributing authors are: D. Baboolar, P. Bankston, R. Betti, D. Bourn, P. Cherenack, D. Dikranjan/H.-P. KA1/4nzi, X. Dong/W. Tholen, M. ErnA(c), T.H. Fay, T.H. Fay/S.V. Joubert, D.N. Georgiou/B.K. Papadopoulos, K.A. Hardie/K.H. Kamps/R.W. Kieboom, H. Herrlich/A. Pultr, K.M. Hofmann, S.S. Hong/Y.K. Kim, J. Isbell, R. Jayewardene/O. Wyler, P. Johnstone, R. Lowen/P. Wuyts, E. Lowen-Colebunders/C. Verbeeck, R. Nailana, J. Picado, T. Plewe, J. Reinhold, G. Richter, H. RArl, S.-H. Sun, Tozzi/V. TrnkovA, V. Valov/D. Vuma, and S. Veldsman. Audience: This volume will be of interest to mathematicians whose research involves category theory and its applications to topology, order, and algebra. |
![]() ![]() You may like...
Top-Down Causation and Emergence
Jan Voosholz, Markus Gabriel
Hardcover
R3,916
Discovery Miles 39 160
Logic from Russell to Church, Volume 5
Dov M. Gabbay, John Woods
Hardcover
R5,602
Discovery Miles 56 020
Mathematical Proofs: A Transition to…
Gary Chartrand, Albert Polimeni, …
Paperback
R2,477
Discovery Miles 24 770
Elementary Lessons in Logic - Deductive…
William Stanley Jevons
Paperback
R600
Discovery Miles 6 000
Algebras, Lattices, Varieties - Volume…
Ralph S Freese, Ralph N. McKenzie, …
Paperback
R3,238
Discovery Miles 32 380
|