![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Mathematical foundations > Mathematical logic
Alfred Tarski was one of the two giants of the twentieth-century development of logic, along with Kurt Goedel. The four volumes of this collection contain all of Tarski's published papers and abstracts, as well as a comprehensive bibliography. Here will be found many of the works, spanning the period 1921 through 1979, which are the bedrock of contemporary areas of logic, whether in mathematics or philosophy. These areas include the theory of truth in formalized languages, decision methods and undecidable theories, foundations of geometry, set theory, and model theory, algebraic logic, and universal algebra.
Supervision of Petri Nets presents supervisory control theory for Petri nets with a legal set as the control goal. Petri nets model discrete event systems - dynamic systems whose evolution is completely determined by the occurrence of discrete events. Control laws, which guarantee that the system meets a set of specifications in the presence of uncontrollable and unobservable events, are studied and constructed, using application areas such as automated manufacturing and transportation systems. Supervision of Petri Nets introduces a new and mathematically sound approach to the subject. Existing results are unified by proposing a general mathematical language that makes extensive use of order theoretical ideas, and numerous new results are described, including ready-to-use algorithms that construct supervisory control laws for Petri nets. Supervision of Petri Nets is an excellent reference for researchers, and may also be used as a supplementary text for advanced courses on control theory.
This book provides an overview of some of the most active topics in the theory of transformation groups over the past decades and stresses advances obtained in the last dozen years. The emphasis is on actions of Lie groups on manifolds and CW complexes. Manifolds and actions of Lie groups on them are studied in the linear, semialgebraic, definable, analytic, smooth, and topological categories. Equivalent vector bundles play an important role. The work is divided into fifteen articles and will be of interest to anyone researching or studying transformations groups. The references make it easy to find details and original accounts of the topics surveyed, including tools and theories used in these accounts.
Cellular automata can be viewed both as computational models and modelling systems of real processes. This volume emphasises the first aspect. In articles written by leading researchers, sophisticated massive parallel algorithms (firing squad, life, Fischer's primes recognition) are treated. Their computational power and the specific complexity classes they determine are surveyed, while some recent results in relation to chaos from a new dynamic systems point of view are also presented. Audience: This book will be of interest to specialists of theoretical computer science and the parallelism challenge.
The notion of complexity is an important contribution of logic to theoretical computer science and mathematics. This volume attempts to approach complexity in a holistic way, investigating mathematical properties of complexity hierarchies at the same time as discussing algorithms and computational properties. A main focus of the volume is on some of the new paradigms of computation, among them Quantum Computing and Infinitary Computation. The papers in the volume are tied together by an introductory article describing abstract properties of complexity hierarchies. This volume will be of great interest to both mathematical logicians and theoretical computer scientists, providing them with new insights into the various views of complexity and thus shedding new light on their own research.
'Numbers and Proofs' presents a gentle introduction to the notion
of proof to give the reader an understanding of how to decipher
others' proofs as well as construct their own. Useful methods of
proof are illustrated in the context of studying problems
concerning mainly numbers (real, rational, complex and integers).
An indispensable guide to all students of mathematics. Each proof
is preceded by a discussion which is intended to show the reader
the kind of thoughts they might have before any attempt proof is
made. Established proofs which the student is in a better position
to follow then follow.
This is the first comprehensive treatment of subjective logic and all its operations. The author developed the approach, and in this book he first explains subjective opinions, opinion representation, and decision-making under vagueness and uncertainty, and he then offers a full definition of subjective logic, harmonising the key notations and formalisms, concluding with chapters on trust networks and subjective Bayesian networks, which when combined form general subjective networks. The author shows how real-world situations can be realistically modelled with regard to how situations are perceived, with conclusions that more correctly reflect the ignorance and uncertainties that result from partially uncertain input arguments. The book will help researchers and practitioners to advance, improve and apply subjective logic to build powerful artificial reasoning models and tools for solving real-world problems. A good grounding in discrete mathematics is a prerequisite.
The series is devoted to the publication of high-level monographs on all areas of mathematical logic and its applications. It is addressed to advanced students and research mathematicians, and may also serve as a guide for lectures and for seminars at the graduate level.
This textbook provides a first introduction to mathematical logic which is closely attuned to the applications of logic in computer science. In it the authors emphasize the notion that deduction is a form of computation. Whilst all the traditional subjects of logic are covered thoroughly: syntax, semantics, completeness, and compactness; much of the book deals with less traditional topics such as resolution theorem proving, logic programming and non-classical logics - modal and intuitionistic - which are becoming increasingly important in computer science. No previous exposure to logic is assumed and so this will be suitable for upper level undergraduates or beginning graduate students in computer science or mathematics.From reviews of the first edition: "... must surely rank as one of the most fruitful textbooks introduced into computer science ... We strongly suggest it as a textbook ..." SIGACT News
Boolean algebras underlie many central constructions of analysis, logic, probability theory, and cybernetics. This book concentrates on the analytical aspects of their theory and application, which distinguishes it among other sources. Boolean Algebras in Analysis consists of two parts. The first concerns the general theory at the beginner's level. Presenting classical theorems, the book describes the topologies and uniform structures of Boolean algebras, the basics of complete Boolean algebras and their continuous homomorphisms, as well as lifting theory. The first part also includes an introductory chapter describing the elementary to the theory. The second part deals at a graduate level with the metric theory of Boolean algebras at a graduate level. The covered topics include measure algebras, their sub algebras, and groups of automorphisms. Ample room is allotted to the new classification theorems abstracting the celebrated counterparts by D.Maharam, A.H. Kolmogorov, and V.A.Rokhlin. Boolean Algebras in Analysis is an exceptional definitive source on Boolean algebra as applied to functional analysis and probability. It is intended for all who are interested in new and powerful tools for hard and soft mathematical analysis.
Synthesis of Finite State Machines: Logic Optimization is the second in a set of two monographs devoted to the synthesis of Finite State Machines (FSMs). The first volume, Synthesis of Finite State Machines: Functional Optimization, addresses functional optimization, whereas this one addresses logic optimization. The result of functional optimization is a symbolic description of an FSM which represents a sequential function chosen from a collection of permissible candidates. Logic optimization is the body of techniques for converting a symbolic description of an FSM into a hardware implementation. The mapping of a given symbolic representation into a two-valued logic implementation is called state encoding (or state assignment) and it impacts heavily area, speed, testability and power consumption of the realized circuit. The first part of the book introduces the relevant background, presents results previously scattered in the literature on the computational complexity of encoding problems, and surveys in depth old and new approaches to encoding in logic synthesis. The second part of the book presents two main results about symbolic minimization; a new procedure to find minimal two-level symbolic covers, under face, dominance and disjunctive constraints, and a unified frame to check encodability of encoding constraints and find codes of minimum length that satisfy them. The third part of the book introduces generalized prime implicants (GPIs), which are the counterpart, in symbolic minimization of two-level logic, to prime implicants in two-valued two-level minimization. GPIs enable the design of an exact procedure for two-level symbolic minimization, based on a covering step which is complicated by the need to guarantee encodability of the final cover. A new efficient algorithm to verify encodability of a selected cover is presented. If a cover is not encodable, it is shown how to augment it minimally until an encodable superset of GPIs is determined. To handle encodability the authors have extended the frame to satisfy encoding constraints presented in the second part. The covering problems generated in the minimization of GPIs tend to be very large. Recently large covering problems have been attacked successfully by representing the covering table with binary decision diagrams (BDD). In the fourth part of the book the authors introduce such techniques and extend them to the case of the implicit minimization of GPIs, where the encodability and augmentation steps are also performed implicitly. Synthesis of Finite State Machines: Logic Optimization will be of interest to researchers and professional engineers who work in the area of computer-aided design of integrated circuits.
This book collects, for the first time in one volume, contributions honoring Professor Raymond Smullyan's work on self-reference. It serves not only as a tribute to one of the great thinkers in logic, but also as a celebration of self-reference in general, to be enjoyed by all lovers of this field. Raymond Smullyan, mathematician, philosopher, musician and inventor of logic puzzles, made a lasting impact on the study of mathematical logic; accordingly, this book spans the many personalities through which Professor Smullyan operated, offering extensions and re-evaluations of his academic work on self-reference, applying self-referential logic to art and nature, and lastly, offering new puzzles designed to communicate otherwise esoteric concepts in mathematical logic, in the manner for which Professor Smullyan was so well known. This book is suitable for students, scholars and logicians who are interested in learning more about Raymond Smullyan's work and life.
Lattice-valued Logic aims at establishing the logical foundation for uncertain information processing routinely performed by humans and artificial intelligence systems. In this textbook for the first time a general introduction on lattice-valued logic is given. It systematically summarizes research from the basic notions up to recent results on lattice implication algebras, lattice-valued logic systems based on lattice implication algebras, as well as the corresponding reasoning theories and methods. The book provides the suitable theoretical logical background of lattice-valued logic systems and supports newly designed intelligent uncertain-information-processing systems and a wide spectrum of intelligent learning tasks.
This superb exposition of a complex subject examines new developments in the theory and practice of computation from a mathematical perspective, with topics ranging from classical computability to complexity, from biocomputing to quantum computing. This book is suitable for researchers and graduate students in mathematics, philosophy, and computer science with a special interest in logic and foundational issues. Most useful to graduate students are the survey papers on computable analysis and biological computing. Logicians and theoretical physicists will also benefit from this book.
Natural duality theory is one of the major growth areas within general algebra. This text provides a short path to the forefront of research in duality theory. It presents a coherent approach to new results in the area, as well as exposing open problems. Unary algebras play a special role throughout the text. Individual unary algebras are relatively simple and easy to work with. But as a class they have a rich and complex entanglement with dualisability. This combination of local simplicity and global complexity ensures that, for the study of natural duality theory, unary algebras are an excellent source of examples and counterexamples. A number of results appear here for the first time. In particular, the text ends with an appendix that provides a new and definitive approach to the concept of the rank of a finite algebra and its relationship with strong dualisability.
In this new text, Steven Givant-the author of several acclaimed books, including works co-authored with Paul Halmos and Alfred Tarski-develops three theories of duality for Boolean algebras with operators. Givant addresses the two most recognized dualities (one algebraic and the other topological) and introduces a third duality, best understood as a hybrid of the first two. This text will be of interest to graduate students and researchers in the fields of mathematics, computer science, logic, and philosophy who are interested in exploring special or general classes of Boolean algebras with operators. Readers should be familiar with the basic arithmetic and theory of Boolean algebras, as well as the fundamentals of point-set topology.
Goguen categories extend the relational calculus and its categorical formalization to the fuzzy world. Starting from the fundamental concepts of sets, binary relations and lattices this book introduces several categorical formulations of an abstract theory of relations such as allegories, Dedekind categories and related structures. It is shown that neither theory is sufficiently rich to describe basic operations on fuzzy relations. The book then introduces Goguen categories and provides a comprehensive study of these structures including their representation theory, and the definability of norm-based operations. The power of the theory is demonstrated by a comprehensive example. A certain Goguen category is used to specify and to develop a fuzzy controller. Based on its abstract description as well as certain desirable properties and their formal proofs, a verified controller is derived without compromising the - sometimes - intuitive choice of norm-based operations by fuzzy engineers.
This volume contains English translations of Frege's early writings in logic and philosophy and of relevant reviews by other leading logicians. Professor Bynum has contributed a biographical essay, introduction, and extensive bibliography.
This volume is dedicated to Prof. Dag Prawitz and his outstanding contributions to philosophical and mathematical logic. Prawitz's eminent contributions to structural proof theory, or general proof theory, as he calls it, and inference-based meaning theories have been extremely influential in the development of modern proof theory and anti-realistic semantics. In particular, Prawitz is the main author on natural deduction in addition to Gerhard Gentzen, who defined natural deduction in his PhD thesis published in 1934. The book opens with an introductory paper that surveys Prawitz's numerous contributions to proof theory and proof-theoretic semantics and puts his work into a somewhat broader perspective, both historically and systematically. Chapters include either in-depth studies of certain aspects of Dag Prawitz's work or address open research problems that are concerned with core issues in structural proof theory and range from philosophical essays to papers of a mathematical nature. Investigations into the necessity of thought and the theory of grounds and computational justifications as well as an examination of Prawitz's conception of the validity of inferences in the light of three "dogmas of proof-theoretic semantics" are included. More formal papers deal with the constructive behaviour of fragments of classical logic and fragments of the modal logic S4 among other topics. In addition, there are chapters about inversion principles, normalization of p roofs, and the notion of proof-theoretic harmony and other areas of a more mathematical persuasion. Dag Prawitz also writes a chapter in which he explains his current views on the epistemic dimension of proofs and addresses the question why some inferences succeed in conferring evidence on their conclusions when applied to premises for which one already possesses evidence.
Modern mathematical logic would not exist without the analytical tools first developed by George Boole in The Mathematical Analysis of Logic and The Laws of Thought. The influence of the Boolean school on the development of logic, always recognised but long underestimated, has recently become a major research topic. This collection is the first anthology of works on Boole. It contains two works published in 1865, the year of Boole's death, but never reprinted, as well as several classic studies of recent decades and ten original contributions appearing here for the first time. From the programme of the English Algebraic School to Boole's use of operator methods, from the problem of interpretability to that of psychologism, a full range of issues is covered. The Boole Anthology is indispensable to Boole studies and will remain so for years to come.
New discoveries about algorithms are leading scientists beyond the
Church-Turing Thesis, which governs the "algorithmic universe" and
asserts the conventionality of recursive algorithms. A new paradigm
for computation, the super-recursive algorithm, offers promising
prospects for algorithms of much greater computing power and
efficiency. * Describes the strengthening link between the theory of super-recursive algorithms and actual algorithms close to practical realization * Examines the theory's basis as a foundation for advancements in computing, information science, and related technologies * Encompasses and systematizes all main types of mathematical models of algorithms * Highlights how super-recursive algorithms pave the way for more advanced design, utilization, and maintenance of computers * Examines and restructures the existing variety of mathematical models of complexity of algorithms and computation, introducing new models * Possesses a comprehensive bibliography and index
Mathematics and logic have been central topics of concern since the
dawn of philosophy. Since logic is the study of correct reasoning,
it is a fundamental branch of epistemology and a priority in any
philosophical system. Philosophers have focused on mathematics as a
case study for general philosophical issues and for its role in
overall knowledge- gathering. Today, philosophy of mathematics and
logic remain central disciplines in contemporary philosophy, as
evidenced by the regular appearance of articles on these topics in
the best mainstream philosophical journals; in fact, the last
decade has seen an explosion of scholarly work in these areas.
An approach to complexity theory which offers a means of analysing algorithms in terms of their tractability. The authors consider the problem in terms of parameterized languages and taking "k-slices" of the language, thus introducing readers to new classes of algorithms which may be analysed more precisely than was the case until now. The book is as self-contained as possible and includes a great deal of background material. As a result, computer scientists, mathematicians, and graduate students interested in the design and analysis of algorithms will find much of interest.
The series is devoted to the publication of high-level monographs on all areas of mathematical logic and its applications. It is addressed to advanced students and research mathematicians, and may also serve as a guide for lectures and for seminars at the graduate level. |
![]() ![]() You may like...
Advances in Computer Vision and…
Hamid R Arabnia, Leonidas Deligiannidis, …
Hardcover
R10,496
Discovery Miles 104 960
Convolutional Neural Networks with Swift…
Brett Koonce
Paperback
Distributed Applications and…
Twittie Senivongse, Rui Oliveira
Paperback
R1,521
Discovery Miles 15 210
PowerShell, IT Pro Solutions…
William R. Stanek, William Stanek
Hardcover
R1,550
Discovery Miles 15 500
Autonomous Systems - Self-Organization…
Bernd Mahr, Huanye Sheng
Hardcover
R2,876
Discovery Miles 28 760
Parallel Computing: Fundamentals…
E.H. D'Hollander, G.R. Joubert, …
Hardcover
R7,110
Discovery Miles 71 100
|