![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Mathematical foundations > Mathematical logic
Calculus for Engineering Students: Fundamentals, Real Problems, and Computers insists that mathematics cannot be separated from chemistry, mechanics, electricity, electronics, automation, and other disciplines. It emphasizes interdisciplinary problems as a way to show the importance of calculus in engineering tasks and problems. While concentrating on actual problems instead of theory, the book uses Computer Algebra Systems (CAS) to help students incorporate lessons into their own studies. Assuming a working familiarity with calculus concepts, the book provides a hands-on opportunity for students to increase their calculus and mathematics skills while also learning about engineering applications.
A thorough introduction to Borel sets and measurable selections, acting as a stepping stone to descriptive set theory by presenting such important techniques as universal sets, prewellordering, scales, etc. It contains significant applications to other branches of mathematics and serves as a self-contained reference accessible by mathematicians in many different disciplines. Written in an easily understandable style, and using only naive set theory, general topology, analysis, and algebra, it is thus well suited for graduates exploring areas of mathematics for their research and for those requiring Borel sets and measurable selections in their work.
Looking at a sequence of zeros and ones, we often feel that it is not random, that is, it is not plausible as an outcome of fair coin tossing. Why? The answer is provided by algorithmic information theory: because the sequence is compressible, that is, it has small complexity or, equivalently, can be produced by a short program. This idea, going back to Solomonoff, Kolmogorov, Chaitin, Levin, and others, is now the starting point of algorithmic information theory. The first part of this book is a textbook-style exposition of the basic notions of complexity and randomness; the second part covers some recent work done by participants of the "Kolmogorov seminar" in Moscow (started by Kolmogorov himself in the 1980s) and their colleagues. This book contains numerous exercises (embedded in the text) that will help readers to grasp the material.
This book contains the courses given at the Fifth School on Complex Systems held at Santiago, Chile, from 9th .to 13th December 1996. At this school met researchers working on areas related with recent trends in Complex Systems, which include dynamical systems, cellular automata, symbolic dynamics, spatial systems, statistical physics and thermodynamics. Scientists working in these subjects come from several areas: pure and applied mathematics, physics, biology, computer science and electrical engineering. Each contribution is devoted to one of the above subjects. In most cases they are structured as surveys, presenting at the same time an original point of view about the topic and showing mostly new results. The paper of Bruno Durand presents the state of the art on the relationships between the notions of surjectivity, injectivity and reversibility in cellular automata when finite, infinite or periodic configurations are considered, also he discusses decidability problems related with the classification of cellular automata as well as global properties mentioned above. The paper of Eric Goles and Martin Matamala gives a uniform presentation of simulations of Turing machines by cellular automata. The main ingredient is the encoding function which must be fixed for all Turing machine. In this context known results are revised and new results are presented.
Whether the source is more industry-based or academic research, there certainly appears to be a growing interest in the field of cryptocurrency. The New York Times had a cover story on March 24, 2022, titled "Time to Enter the Crypto Zone?," and they talked about institutional investors pouring billions into digital tokens, salaries being taken in Bitcoins, and even Bitcoin ATMs in grocery stores. Certainly, there have been ups and downs in crypto, but it has a kind of alluring presence that tempts one to include crypto as part of one’s portfolio. Those who are "prime crypto-curious" investors are usually familiar with the tech/pop culture and feel they want to diversify a bit in this fast-moving market. Even universities are beginning to offer more courses and create "Centers on Cryptocurrency." Some universities are even requiring their students who take a crypto course to pay the course tuition via cryptocurrency. In response to the growing interest and fascination about the crypto industry and cryptocurrency in general, Cryptocurrency Concepts, Technology, and Applications brings together many leading worldwide contributors to discuss a broad range of issues associated with cryptocurrency. The book covers a wide array of crypto-related topics, including: Blockchain NFTs Data analytics and AI Crypto crime Crypto industry and regulation Crypto and public choice Consumer confidence Bitcoin and other cryptocurrencies. Presenting various viewpoints on where the crypto industry is heading, this timely book points out both the advantages and limitations of this emerging field. It is an easy-to-read, yet comprehensive, overview of cryptocurrency in the U.S. and international markets.
The book contains 8 detailed expositions of the lectures given at the Kaikoura 2000 Workshop on Computability, Complexity, and Computational Algebra. Topics covered include basic models and questions of complexity theory, the Blum-Shub-Smale model of computation, probability theory applied to algorithmics (randomized alogrithms), parametric complexity, Kolmogorov complexity of finite strings, computational group theory, counting problems, and canonical models of ZFC providing a solution to continuum hypothesis. The text addresses students in computer science or mathematics, and professionals in these areas who seek a complete, but gentle introduction to a wide range of techniques, concepts, and research horizons in the area of computational complexity in a broad sense.
Optimization Theory Based on Neutrosophic and Plithogenic Sets presents the state-of-the-art research on neutrosophic and plithogenic theories and their applications in various optimization fields. Its table of contents covers new concepts, methods, algorithms, modelling, and applications of green supply chain, inventory control problems, assignment problems, transportation problem, nonlinear problems and new information related to optimization for the topic from the theoretical and applied viewpoints in neutrosophic sets and logic.
In this book we develop powerful techniques based on formal methods for the verification of correctness, consistency and safety properties related to dynamic reconfiguration and communication in complex distributed systems. In particular, static analysis techniques based on types and type systems are an adequate methodology considering their success in guaranteeing not only basic safety properties, but also more sophisticated ones like deadlock or lock freedom in concurrent settings.The main contributions of this book are twofold. i) We design a type system for a concurrent object-oriented calculus to statically ensure consistency of dynamic reconfigurations. ii) We define an encoding of the session pi-calculus, which models communication in distributed systems, into the standard typed pi-calculus. We use this encoding to derive properties like type safety and progress in the session pi-calculus by exploiting the corresponding properties in the standard typed pi-calculus.
Model theory is the meta-mathematical study of the concept of mathematical truth. After Afred Tarski coined the term Theory of Models in the early 1950's, it rapidly became one of the central most active branches of mathematical logic. In the last few decades, ideas that originated within model theory have provided powerful tools to solve problems in a variety of areas of classical mathematics, including algebra, combinatorics, geometry, number theory, and Banach space theory and operator theory. The two volumes of Beyond First Order Model Theory present the reader with a fairly comprehensive vista, rich in width and depth, of some of the most active areas of contemporary research in model theory beyond the realm of the classical first-order viewpoint. Each chapter is intended to serve both as an introduction to a current direction in model theory and as a presentation of results that are not available elsewhere. All the articles are written so that they can be studied independently of one another. This second volume contains introductions to real-valued logic and applications, abstract elementary classes and applications, interconnections between model theory and function spaces, nonstucture theory, and model theory of second-order logic. Features A coherent introduction to current trends in model theory. Contains articles by some of the most influential logicians of the last hundred years. No other publication brings these distinguished authors together. Suitable as a reference for advanced undergraduate, postgraduates, and researchers. Material presented in the book (e.g, abstract elementary classes, first-order logics with dependent sorts, and applications of infinitary logics in set theory) is not easily accessible in the current literature. The various chapters in the book can be studied independently.
Suitable for anyone who enjoys logic puzzles Could be used as a companion book for a course on mathematical proof. The puzzles feature the same issues of problem-solving and proof-writing. For anyone who enjoys logical puzzles. For anyone interested in legal reasoning. For anyone who loves the game of baseball.
Whether the source is more industry-based or academic research, there certainly appears to be a growing interest in the field of cryptocurrency. The New York Times had a cover story on March 24, 2022, titled "Time to Enter the Crypto Zone?," and they talked about institutional investors pouring billions into digital tokens, salaries being taken in Bitcoins, and even Bitcoin ATMs in grocery stores. Certainly, there have been ups and downs in crypto, but it has a kind of alluring presence that tempts one to include crypto as part of one’s portfolio. Those who are "prime crypto-curious" investors are usually familiar with the tech/pop culture and feel they want to diversify a bit in this fast-moving market. Even universities are beginning to offer more courses and create "Centers on Cryptocurrency." Some universities are even requiring their students who take a crypto course to pay the course tuition via cryptocurrency. In response to the growing interest and fascination about the crypto industry and cryptocurrency in general, Cryptocurrency Concepts, Technology, and Applications brings together many leading worldwide contributors to discuss a broad range of issues associated with cryptocurrency. The book covers a wide array of crypto-related topics, including: Blockchain NFTs Data analytics and AI Crypto crime Crypto industry and regulation Crypto and public choice Consumer confidence Bitcoin and other cryptocurrencies. Presenting various viewpoints on where the crypto industry is heading, this timely book points out both the advantages and limitations of this emerging field. It is an easy-to-read, yet comprehensive, overview of cryptocurrency in the U.S. and international markets.
AI Metaheuristics for Information Security in Digital Media examines the latest developments in AI-based metaheuristics algorithms with applications in information security for digital media. It highlights the importance of several security parameters, their analysis, and validations for different practical applications. Drawing on multidisciplinary research including computer vision, machine learning, artificial intelligence, modified/newly developed metaheuristics algorithms, it will enhance information security for society. It includes state-of-the-art research with illustrations and exercises throughout.
A more accessible approach than most competitor texts, which move into advanced, research-level topics too quickly for today's students. Part I is comprehensive in providing all necessary mathematical underpinning, particularly for those who need more opportunity to develop their mathematical competence. More confident students may move directly to Part II and dip back into Part I as a reference. Ideal for use as an introductory text for courses in quantum computing. Fully worked examples illustrate the application of mathematical techniques. Exercises throughout develop concepts and enhance understanding. End-of-chapter exercises offer more practice in developing a secure foundation.
The book Advances in Distance Learning in Times of Pandemic is devoted to the issues and challenges faced by universities in the field of distance learning in COVID-19 times. It covers both the theoretical and practical aspects connected to distance education. It elaborates on issues regarding distance learning, its challenges, assessment by students and their expectations, the use of tools to improve distance learning, and the functioning of e-learning in the industry 4.0 and society 5.0 eras. The book also devotes a lot of space to the issues of Web 3.0 in university e-learning, quality assurance, and knowledge management. The aim and scope of this book is to draw a holistic picture of ongoing online teaching-activities before and during the lockdown period and present the meaning and future of e-learning from students’ points of view, taking into consideration their attitudes and expectations as well as industry 4.0 and society 5.0 aspects. The book presents the approach to distance learning and how it has changed, especially during a pandemic that revolutionized education. It highlights • the function of online education and how that has changed before and during the pandemic. • how e-learning is beneficial in promoting digital citizenship. • distance learning characteristic in the era of industry 4.0 and society 5.0. • how the era of industry 4.0 treats distance learning as a desirable form of education. The book covers both scientific and educational aspects and can be useful for university-level undergraduate, postgraduate and research-grade courses and can be referred to by anyone interested in exploring the diverse aspects of distance learning.
The Nuts and Bolts of Proofs: An Introduction to Mathematical Proofs, Fifth Edition provides basic logic of mathematical proofs and how they work. The book offers techniques for both reading and writing proofs, discusses techniques in proving if/then statements by contrapositive and proofing by contradiction, includes the negation statement, and/or, examines various theorems, such as the if and only-if, equivalence theorems, existence theorems, and the uniqueness theorems. In addition, the use of counter examples, mathematical induction, composite statements including multiple hypothesis and multiple conclusions, and equality of numbers are also covered. The book also provides mathematical topics for practicing proof techniques. Included here are the Cartesian products, indexed families, functions, and relations. The last chapter of the book provides review exercises on various topics. Undergraduate students in engineering and physical science will find this book accessible as well as invaluable.
How should we think about the meaning of the words that make up our language? How does reference of these terms work, and what is their referent when these are connected to abstract objects rather than to concrete ones? Can logic help to address these questions? This collection of papers aims to unify the questions of syntax and semantics of language, which span across the fields of logic, philosophy and ontology of language. The leading motif of the presented selection is the differentiation between linguistic tokens (material, concrete objects) on the one hand and linguistic types (ideal, abstract objects) on the other. Through a promenade among articles that span over all of the Author's career, this book addresses the complex philosophical question of the ontology of language by following the crystalline conceptual tools offered by logic. At the core of Wybraniec-Skardowska's scholarship is the idea that language is an ontological being, characterized in compliance with the logical conception of language proposed by Ajdukiewicz. The application throughout the book of tools of classical logic and set theory results fosters the emergence of a general formal logical theory of syntax, semantics and of the pragmatics of language, which takes into account the duality token-type in the understanding of linguistic expressions. Via a functional approach to language itself, logic appears as ontologically neutral with respect to existential assumptions relating to the nature of linguistic expressions and their extra-linguistic counterparts. The book is addressed to readers both at the graduate and undergraduate level, but also to a more general audience interested in getting a firmer grip on the interplay between reality and the language we use to describe and understand it.
The aim of this book is to give self-contained proofs of all basic results concerning the infinite-valued proposition al calculus of Lukasiewicz and its algebras, Chang's MV -algebras. This book is for self-study: with the possible exception of Chapter 9 on advanced topics, the only prere- quisite for the reader is some acquaintance with classical propositional logic, and elementary algebra and topology. In this book it is not our aim to give an account of Lukasiewicz's motivations for adding new truth values: readers interested in this topic will find appropriate references in Chapter 10. Also, we shall not explain why Lukasiewicz infinite-valued propositionallogic is a ba- sic ingredient of any logical treatment of imprecise notions: Hajek's book in this series on Trends in Logic contains the most authorita- tive explanations. However, in order to show that MV-algebras stand to infinite-valued logic as boolean algebras stand to two-valued logic, we shall devote Chapter 5 to Ulam's game of Twenty Questions with lies/errors, as a natural context where infinite-valued propositions, con- nectives and inferences are used. While several other semantics for infinite-valued logic are known in the literature-notably Giles' game- theoretic semantics based on subjective probabilities-still the transi- tion from two-valued to many-valued propositonallogic can hardly be modelled by anything simpler than the transformation of the familiar game of Twenty Questions into Ulam game with lies/errors.
This book examines an abstract mathematical theory, placing special emphasis on results applicable to formal logic. If a theory is especially abstract, it may find a natural home within several of the more familiar branches of mathematics. This is the case with the theory of closure spaces. It might be considered part of topology, lattice theory, universal algebra or, no doubt, one of several other branches of mathematics as well. In our development we have treated it, conceptually and methodologically, as part of topology, partly because we first thought ofthe basic structure involved (closure space), as a generalization of Frechet's concept V-space. V-spaces have been used in some developments of general topology as a generalization of topological space. Indeed, when in the early '50s, one of us started thinking about closure spaces, we thought ofit as the generalization of Frechet V space which comes from not requiring the null set to be CLOSURE SPACES ANDLOGIC XlI closed(as it is in V-spaces). This generalization has an extreme advantage in connection with application to logic, since the most important closure notion in logic, deductive closure, in most cases does not generate a V-space, since the closure of the null set typically consists of the "logical truths" of the logic being examined."
SECTION I In 1972, Donald Davison and Gilbert Hannan wrote in the introduction to the volume Semantics of Natural Language: "The success of linguistics in treating natural languages as formal ~yntactic systems has aroused the interest of a number of linguists in a parallel or related development of semantics. For the most part quite independently, many philosophers and logicians have recently been applying formal semantic methods to structures increasingly like natural languages. While differences in training, method and vocabulary tend to veil the fact, philosophers and linguists are converging, it seems, on a common set of interrelated problems. " Davidson and Harman called for an interdisciplinary dialogue of linguists, philosophers and logicians on the semantics of natural language, and during the last ten years such an enterprise has proved extremely fruitful. Thanks to the cooperative effort in these several fields, the last decade has brought about striking progress in our understanding of the semantics of natural language. This work on semantics has typically paid little attention to psychological aspects of meaning. Thus, psychologists or computer scientists working on artificial intelligence were not invited to join the forces in the influential introduction of Semantics of Natural Language. No doubt it was felt that while psychological aspects of language are important in their own right, they are not relevant to our immediate semantic concerns. In the last few years, several linguists and logicians have come to question the fundamental anti-psychological assumptions underlying their theorizing.
This book explores the research of Professor Hilary Putnam, a Harvard professor as well as a leading philosopher, mathematician and computer scientist. It features the work of distinguished scholars in the field as well as a selection of young academics who have studied topics closely connected to Putnam's work. It includes 12 papers that analyze, develop, and constructively criticize this notable professor's research in mathematical logic, the philosophy of logic and the philosophy of mathematics. In addition, it features a short essay presenting reminiscences and anecdotes about Putnam from his friends and colleagues, and also includes an extensive bibliography of his work in mathematics and logic. The book offers readers a comprehensive review of outstanding contributions in logic and mathematics as well as an engaging dialogue between prominent scholars and researchers. It provides those interested in mathematical logic, the philosophy of logic, and the philosophy of mathematics unique insights into the work of Hilary Putnam.
This book is designed to be usable as a textbook for an undergraduate course or for an advanced graduate course in coding theory as well as a reference for researchers in discrete mathematics, engineering and theoretical computer science. This second edition has three parts: an elementary introduction to coding, theory and applications of codes, and algebraic curves. The latter part presents a brief introduction to the theory of algebraic curves and its most important applications to coding theory.
Laws of Form is a seminal work in foundations of logic, mathematics and philosophy published by G Spencer-Brown in 1969. The book provides a new point of view on form and the role of distinction, markedness and the absence of distinction (the unmarked state) in the construction of any universe. A conference was held August 8-10, 2019 at the Old Library, Liverpool University, 19 Abercromby Square, L697ZN, UK to celebrate the 50th anniversary of the publication of Laws of Form and to remember George Spencer-Brown, its author. The book is a collection of papers introducing and extending Laws of Form written primarily by people who attended the conference in 2019.
College students struggle with the switch from thinking of mathematics as a calculation based subject to a problem solving based subject. This book describes how the introduction to proofs course can be taught in a way that gently introduces students to this new way of thinking. This introduction utilizes recent research in neuroscience regarding how the brain learns best. Rather than jumping right into proofs, students are first taught how to change their mindset about learning, how to persevere through difficult problems, how to work successfully in a group, and how to reflect on their learning. With these tools in place, students then learn logic and problem solving as a further foundation.Next various proof techniques such as direct proofs, proof by contraposition, proof by contradiction, and mathematical induction are introduced. These proof techniques are introduced using the context of number theory. The last chapter uses Calculus as a way for students to apply the proof techniques they have learned.
Today the notion of the algorithm is familiar not only to mathematicians. It forms a conceptual base for information processing; the existence of a corresponding algorithm makes automatic information processing possible. The theory of algorithms (together with mathematical logic ) forms the the oretical basis for modern computer science (see [Sem Us 86]; this article is called "Mathematical Logic in Computer Science and Computing Practice" and in its title mathematical logic is understood in a broad sense including the theory of algorithms). However, not everyone realizes that the word "algorithm" includes a transformed toponym Khorezm. Algorithms were named after a great sci entist of medieval East, is al-Khwarizmi (where al-Khwarizmi means "from Khorezm"). He lived between c. 783 and 850 B.C. and the year 1983 was chosen to celebrate his 1200th birthday. A short biography of al-Khwarizmi compiled in the tenth century starts as follows: "al-Khwarizmi. His name is Muhammad ibn Musa, he is from Khoresm" (cited according to [Bul Rozen Ah 83, p.8]).
As society comes to rely increasingly on software for its welfare
and prosperity there is an urgent need to create systems in which
it can trust. Experience has shown that confidence can only come
from a more profound understanding of the issues, which in turn can
come only if it is based on logically sound foundations. |
![]() ![]() You may like...
Printed Films - Materials Science and…
Maria Prudenziati, Jacob Hormadaly
Paperback
Discrete Dynamical Systems and Chaotic…
Jacques Bahi, Christophe Guyeux
Hardcover
R3,429
Discovery Miles 34 290
Pattern Recognition and Signal Analysis…
Anke Meyer-Baese, Volker J. Schmid
Paperback
Algorithms and Theory of Computation…
Mikhail J. Atallah, Marina Blanton
Paperback
R2,078
Discovery Miles 20 780
Numeric Computation and Statistical Data…
Sergei V. Chekanov
Paperback
R3,222
Discovery Miles 32 220
Unconventional Optical Elements for…
Emanuel Marom, Nikolaos A. Vainos, …
Hardcover
R4,528
Discovery Miles 45 280
Computational Approaches in the Transfer…
Xiaoyan Zhang, Martin Constable, …
Hardcover
Smart Technology Trends in Industrial…
Dagmar Caganova, Michal Balog, …
Hardcover
R5,180
Discovery Miles 51 800
|