![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Mathematical foundations > Mathematical logic
Pure inductive logic is the study of rational probability treated as a branch of mathematical logic. This monograph, the first devoted to this approach, brings together the key results from the past seventy years plus the main contributions of the authors and their collaborators over the last decade to present a comprehensive account of the discipline within a single unified context. The exposition is structured around the traditional bases of rationality, such as avoiding Dutch Books, respecting symmetry and ignoring irrelevant information. The authors uncover further rationality concepts, both in the unary and in the newly emerging polyadic languages, such as conformity, spectrum exchangeability, similarity and language invariance. For logicians with a mathematical grounding, this book provides a complete self-contained course on the subject, taking the reader from the basics up to the most recent developments. It is also a useful reference for a wider audience from philosophy and computer science.
This compilation of papers presented at the 2000 European Summer Meeting of the Association for Symbolic Logic marks the centennial anniversary of Hilbert's famous lecture. Held in the same hall at La Sorbonne where Hilbert first presented his famous problems, this meeting carries special significance to the Mathematics and Logic communities. The presentations include tutorials and research articles from some of the world's preeminent logicians. Three long articles are based on tutorials given at the meeting, and present accessible expositions of developing research in three active areas of logic: model theory, computability, and set theory. The eleven subsequent articles cover separate research topics in many areas of mathematical logic, including: aspects of Computer Science, Proof Theory, Set Theory, Model Theory, Computability Theory, and aspects of Philosophy.
Foundations of mathematics is the study of the most basic concepts and logical structure of mathematics, with an eye to the unity of human knowledge. Almost all of the problems studied in this book are motivated by an overriding foundational question: What are the appropriate axioms for mathematics? Through a series of case studies, these axioms are examined to prove particular theorems in core mathematical areas such as algebra, analysis, and topology, focusing on the language of second-order arithmetic, the weakest language rich enough to express and develop the bulk of mathematics. In many cases, if a mathematical theorem is proved from appropriately weak set existence axioms, then the axioms will be logically equivalent to the theorem. Furthermore, only a few specific set existence axioms arise repeatedly in this context, which in turn correspond to classical foundational programs. This is the theme of reverse mathematics, which dominates the first half of the book. The second part focuses on models of these and other subsystems of second-order arithmetic. Additional results are presented in an appendix.
Originally published in 1966. Professor Rescher's aim is to develop a "logic of commands" in exactly the same general way which standard logic has already developed a "logic of truth-functional statement compounds" or a "logic of quantifiers". The object is to present a tolerably accurate and precise account of the logically relevant facets of a command, to study the nature of "inference" in reasonings involving commands, and above all to establish a viable concept of validity in command inference, so that the logical relationships among commands can be studied with something of the rigour to which one is accustomed in other branches of logic.
Intellectual property owners must continually exploit new ways of reproducing, distributing, and marketing their products. However, the threat of piracy looms as a major problem with digital distribution and storage technologies. Multimedia Watermarking Techniques and Applications covers all current and future trends in the design of modern systems that use watermarking to protect multimedia content. Containing the works of contributing authors who are worldwide experts in the field, this volume is intended for researchers and practitioners, as well as for those who want a broad understanding of multimedia security. In the wake of the explosive growth of digital entertainment and Internet applications, this book is the definitive resource on the subject for scientists, researchers, programmers, engineers, business managers, entrepreneurs, and investors.
Goedel's Incompleteness Theorems are among the most significant results in the foundation of mathematics. These results have a positive consequence: any system of axioms for mathematics that we recognize as correct can be properly extended by adding as a new axiom a formal statement expressing that the original system is consistent. This suggests that our mathematical knowledge is inexhaustible, an essentially philosophical topic to which this book is devoted. Basic material in predicate logic, set theory and recursion theory is presented, leading to a proof of incompleteness theorems. The inexhaustibility of mathematical knowledge is treated based on the concept of transfinite progressions of theories as conceived by Turing and Feferman. All concepts and results necessary to understand the arguments are introduced as needed, making the presentation self-contained and thorough.
Originally published in 1973. This book is directed to the student of philosophy whose background in mathematics is very limited. The author strikes a balance between material of a philosophical and a formal kind, and does this in a way that will bring out the intricate connections between the two. On the formal side, he gives particular care to provide the basic tools from set theory and arithmetic that are needed to study systems of logic, setting out completeness results for two, three, and four valued logic, explaining concepts such as freedom and bondage in quantificational logic, describing the intuitionistic conception of the logical operators, and setting out Zermelo's axiom system for set theory. On the philosophical side, he gives particular attention to such topics as the problem of entailment, the import of the Loewenheim-Skolem theorem, the expressive powers of quantificational logic, the ideas underlying intuitionistic logic, the nature of set theory, and the relationship between logic and set theory. There are exercises within the text, set out alongside the theoretical ideas that they involve.
Originally published in 1962. A clear and simple account of the growth and structure of Mathematical Logic, no earlier knowledge of logic being required. After outlining the four lines of thought that have been its roots - the logic of Aristotle, the idea of all the parts of mathematics as systems to be designed on the same sort of plan as that used by Euclid and his Elements, and the discoveries in algebra and geometry in 1800-1860 - the book goes on to give some of the main ideas and theories of the chief writers on Mathematical Logic: De Morgan, Boole, Jevons, Pierce, Frege, Peano, Whitehead, Russell, Post, Hilbert and Goebel. Written to assist readers who require a general picture of current logic, it will also be a guide for those who will later be going more deeply into the expert details of this field.
Originally published in 1937. A short account of the traditional logic, intended to provide the student with the fundamentals necessary for the specialized study. Suitable for working through individualy, it will provide sufficient knowledge of the elements of the subject to understand materials on more advanced and specialized topics. This is an interesting historic perspective on this area of philosophy and mathematics.
Originally published in 1934. This fourth edition originally published 1954., revised by C. W. K. Mundle. "It must be the desire of every reasonable person to know how to justify a contention which is of sufficient importance to be seriously questioned. The explicit formulation of the principles of sound reasoning is the concern of Logic". This book discusses the habit of sound reasoning which is acquired by consciously attending to the logical principles of sound reasoning, in order to apply them to test the soundness of arguments. It isn't an introduction to logic but it encourages the practice of logic, of deciding whether reasons in argument are sound or unsound. Stress is laid upon the importance of considering language, which is a key instrument of our thinking and is imperfect.
Originally published in 1962. This book gives an account of the concepts and methods of a basic part of logic. In chapter I elementary ideas, including those of truth-functional argument and truth-functional validity, are explained. Chapter II begins with a more comprehensive account of truth-functionality; the leading characteristics of the most important monadic and dyadic truth-functions are described, and the different notations in use are set forth. The main part of the book describes and explains three different methods of testing truth-functional aguments and agument forms for validity: the truthtable method, the deductive method and the method of normal forms; for the benefit mainly of readers who have not acquired in one way or another a general facility in the manipulation of symbols some of the procedures have been described in rather more detail than is common in texts of this kind. In the final chapter the author discusses and rejects the view, based largely on the so called paradoxes of material implication, that truth-functional logic is not applicable in any really important way to arguments of ordinary discourse.
Originally published in 1964. This book is concerned with general arguments, by which is meant broadly arguments that rely for their force on the ideas expressed by all, every, any, some, none and other kindred words or phrases. A main object of quantificational logic is to provide methods for evaluating general arguments. To evaluate a general argument by these methods we must first express it in a standard form. Quantificational form is dealt with in chapter one and in part of chapter three; in the remainder of the book an account is given of methods by which arguments when formulated quantificationally may be tested for validity or invalidity. Some attention is also paid to the logic of identity and of definite descriptions. Throughout the book an attempt has been made to give a clear explanation of the concepts involved and the symbols used; in particular a step-by-step and partly mechanical method is developed for translating complicated statements of ordinary discourse into the appropriate quantificational formulae. Some elementary knowledge of truth-functional logic is presupposed.
Algorithms and Theory of Computation Handbook, Second Edition: Special Topics and Techniques provides an up-to-date compendium of fundamental computer science topics and techniques. It also illustrates how the topics and techniques come together to deliver efficient solutions to important practical problems. Along with updating and revising many of the existing chapters, this second edition contains more than 15 new chapters. This edition now covers self-stabilizing and pricing algorithms as well as the theories of privacy and anonymity, databases, computational games, and communication networks. It also discusses computational topology, natural language processing, and grid computing and explores applications in intensity-modulated radiation therapy, voting, DNA research, systems biology, and financial derivatives. This best-selling handbook continues to help computer professionals and engineers find significant information on various algorithmic topics. The expert contributors clearly define the terminology, present basic results and techniques, and offer a number of current references to the in-depth literature. They also provide a glimpse of the major research issues concerning the relevant topics.
In this 1987 text Professor Jech gives a unified treatment of the various forcing methods used in set theory, and presents their important applications. Product forcing, iterated forcing and proper forcing have proved powerful tools when studying the foundations of mathematics, for instance in consistency proofs. The book is based on graduate courses though some results are also included, making the book attractive to set theorists and logicians.
This comprehensive two-volume work is devoted to the most general beginnings of mathematics. It goes back to Hausdorff's classic Set Theory (2nd ed., 1927), where set theory and the theory of functions were expounded as the fundamental parts of mathematics in such a way that there was no need for references to other sources. Along the lines of Hausdorff's initial work (1st ed., 1914), measure and integration theory is also included here as the third fundamental part of contemporary mathematics. The material about sets and numbers is placed in Volume 1 and the material about functions and measures is placed in Volume 2. Contents Historical foreword on the centenary after Felix Hausdorff's classic Set Theory Fundamentals of the theory of functions Fundamentals of the measure theory Historical notes on the Riesz - Radon - Frechet problem of characterization of Radon integrals as linear functionals
'Points, questions, stories, and occasional rants introduce the 24 chapters of this engaging volume. With a focus on mathematics and peppered with a scattering of computer science settings, the entries range from lightly humorous to curiously thought-provoking. Each chapter includes sections and sub-sections that illustrate and supplement the point at hand. Most topics are self-contained within each chapter, and a solid high school mathematics background is all that is needed to enjoy the discussions. There certainly is much to enjoy here.'CHOICEEver notice how people sometimes use math words inaccurately? Or how sometimes you instinctively know a math statement is false (or not known)?Each chapter of this book makes a point like those above and then illustrates the point by doing some real mathematics through step-by-step mathematical techniques.This book gives readers valuable information about how mathematics and theoretical computer science work, while teaching them some actual mathematics and computer science through examples and exercises. Much of the mathematics could be understood by a bright high school student. The points made can be understood by anyone with an interest in math, from the bright high school student to a Field's medal winner.
Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. The theory set out in this volume, the ninth publication in the Perspectives in Logic series, is the result of the meeting and common development of two currents of mathematical research: descriptive set theory and recursion theory. Both are concerned with notions of definability and with the classification of mathematical objects according to their complexity. These are the common themes which run through the topics discussed here. The author develops a general theory from which the results of both areas can be derived, making these common threads clear.
The huge number and broad range of the existing and potential applications of fuzzy logic have precipitated a veritable avalanche of books published on the subject. Most, however, focus on particular areas of application. Many do no more than scratch the surface of the theory that holds the power and promise of fuzzy logic.
Among the most exciting developments in science today is the design and construction of the quantum computer. Its realization will be the result of multidisciplinary efforts, but ultimately, it is mathematics that lies at the heart of theoretical quantum computer science.
This volume, which ten years ago appeared as the first in the acclaimed series Lecture Notes in Logic, serves as an introduction to recursion theory. The fundamental concept of recursion makes the idea of computability accessible to a mathematical analysis, thus forming one of the pillars on which modern computer science rests. The clarity and focus of this text have established it as a classic instrument for teaching and self-study that prepares its readers for the study of advanced monographs and the current literature on recursion theory.
This classic introduction to the main areas of mathematical logic provides the basis for a first graduate course in the subject. It embodies the viewpoint that mathematical logic is not a collection of vaguely related results, but a coherent method of attacking some of the most interesting problems, which face the mathematician. The author presents the basic concepts in an unusually clear and accessible fashion, concentrating on what he views as the central topics of mathematical logic: proof theory, model theory, recursion theory, axiomatic number theory, and set theory. There are many exercises, and they provide the outline of what amounts to a second book that goes into all topics in more depth. This book has played a role in the education of many mature and accomplished researchers.
This comprehensive two-volume work is devoted to the most general beginnings of mathematics. It goes back to Hausdorff's classic Set Theory (2nd ed., 1927), where set theory and the theory of functions were expounded as the fundamental parts of mathematics in such a way that there was no need for references to other sources. Along the lines of Hausdorff's initial work (1st ed., 1914), measure and integration theory is also included here as the third fundamental part of contemporary mathematics.The material about sets and numbers is placed in Volume 1 and the material about functions and measures is placed in Volume 2. Contents Fundamentals of the theory of classes, sets, and numbers Characterization of all natural models of Neumann - Bernays - Godel and Zermelo - Fraenkel set theories Local theory of sets as a foundation for category theory and its connection with the Zermelo - Fraenkel set theory Compactness theorem for generalized second-order language
Model theory investigates mathematical structures by means of formal languages. These so-called first-order languages have proved particularly useful. The text introduces the reader to the model theory of first-order logic, avoiding syntactical issues that are not too relevant to model-theory. In this spirit, the compactness theorem is proved via the algebraically useful ultraproduct technique, rather than via the completeness theorem of first-order logic. This leads fairly quickly to algebraic applications, like Malcev's local theorems (of group theory) and, after a little more preparation, also to Hilbert's Nullstellensatz (of field theory). Steinitz' dimension theory for field extensions is obtained as a special case of a much more general model-theoretic treatment of strongly minimal sets. The final chapter is on the models of the first-order theory of the integers as an abelian group. This material appears here for the first time in a textbook of introductory level, and is used to give hints to further reading and to recent developments in the field, such as stability (or classification) theory. The latter itself is not touched upon. The undergraduate or graduate, is assumed t
Relation theory originates with Hausdorff (Mengenlehre 1914) and
Sierpinski (Nombres transfinis, 1928) with the study of order
types, specially among chains = total orders = linear orders. One
of its first important problems was partially solved by Dushnik,
Miller 1940 who, starting from the chain of reals, obtained an
infinite strictly decreasing sequence of chains (of continuum
power) with respect to embeddability. In 1948 I conjectured that
every strictly decreasing sequence of denumerable chains is finite.
This was affirmatively proved by Laver (1968), in the more general
case of denumerable unions of scattered chains (ie: which do not
embed the chain Q of rationals), by using the barrier and the
better orderin gof Nash-Williams (1965 to 68).
In this volume, logic starts from the observation that in everyday arguments, as brought forward say by a lawyer, statements are transformed linguistically, connecting them in formal ways irrespective of their contents. Understanding such arguments as deductive situations, or "sequents" in the technical terminology, the transformations between them can be expressed as logical rules. This leads to Gentzen's calculi of derivations, presented first for positive logic and then, depending on the requirements made on the behaviour of negation, for minimal, intuitionist and classical logic. Identifying interdeducible formulas, each of these calculi gives rise to a lattice-like ordered structure. Describing the generation of filters in these structures leads to corresponding modus ponens calculi, and these turn out to be semantically complete because they express the algorithms generating semantical consequences, as obtained in Volume One of these lectures. The operators transforming derivations from one type of calculus into the other are also studied with respect to changes of the lengths of derivations, and operators eliminating defined predicate and function symbols are described expli |
![]() ![]() You may like...
From Quantum Information to Musical…
Maria Luisa Dalla Chiara, Roberto Giuntini, …
Paperback
R550
Discovery Miles 5 500
Elementary Lessons in Logic - Deductive…
William Stanley Jevons
Paperback
R600
Discovery Miles 6 000
Emerging Applications of Fuzzy Algebraic…
Chiranjibe Jana, Tapan Senapati, …
Hardcover
R8,410
Discovery Miles 84 100
Logic from Russell to Church, Volume 5
Dov M. Gabbay, John Woods
Hardcover
R5,602
Discovery Miles 56 020
Algebras, Lattices, Varieties - Volume…
Ralph S Freese, Ralph N. McKenzie, …
Paperback
R3,238
Discovery Miles 32 380
|