![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Mathematical foundations > Mathematical logic
This volume presents 38 classic texts in formal epistemology, and strengthens the ties between research into this area of philosophy and its neighbouring intellectual disciplines. The editors provide introductions to five subsections: Bayesian Epistemology, Belief Change, Decision Theory, Interactive Epistemology and Epistemic Logic. 'Formal epistemology' is a term coined in the late 1990s for a new constellation of interests in philosophy, the origins of which are found in earlier works of epistemologists, philosophers of science and logicians. It addresses a growing agenda of problems concerning knowledge, belief, certainty, rationality, deliberation, decision, strategy, action and agent interaction - and it does so using methods from logic, probability, computability, decision and game theory. The volume also includes a thorough index and suggestions for further reading, and thus offers a complete teaching and research package for students as well as research scholars of formal epistemology, philosophy, logic, computer science, theoretical economics and cognitive psychology.
This is a self-contained exposition by one of the leading experts in lattice theory, George Gratzer, presenting the major results of the last 70 years on congruence lattices of finite lattices, featuring the author's signature Proof-by-Picture method. Key features: * Insightful discussion of techniques to construct "nice" finite lattices with given congruence lattices and "nice" congruence-preserving extensions * Contains complete proofs, an extensive bibliography and index, and over 140 illustrations * This new edition includes two new parts on Planar Semimodular Lattices and The Order of Principle Congruences, covering the research of the last 10 years The book is appropriate for a one-semester graduate course in lattice theory, and it is a practical reference for researchers studying lattices. Reviews of the first edition: "There exist a lot of interesting results in this area of lattice theory, and some of them are presented in this book. [This] monograph...is an exceptional work in lattice theory, like all the contributions by this author. ... The way this book is written makes it extremely interesting for the specialists in the field but also for the students in lattice theory. Moreover, the author provides a series of companion lectures which help the reader to approach the Proof-by-Picture sections." (Cosmin Pelea, Studia Universitatis Babes-Bolyai Mathematica, Vol. LII (1), 2007) "The book is self-contained, with many detailed proofs presented that can be followed step-by-step. [I]n addition to giving the full formal details of the proofs, the author chooses a somehow more pedagogical way that he calls Proof-by-Picture, somehow related to the combinatorial (as opposed to algebraic) nature of many of the presented results. I believe that this book is a much-needed tool for any mathematician wishing a gentle introduction to the field of congruences representations of finite lattices, with emphasis on the more 'geometric' aspects." -Mathematical Reviews
This book offers insight into the nature of meaningful discourse. It presents an argument of great intellectual scope written by an author with more than four decades of experience. Readers will gain a deeper understanding into three theories of the logos: analytic, dialectical, and oceanic. The author first introduces and contrasts these three theories. He then assesses them with respect to their basic parameters: necessity, truth, negation, infinity, as well as their use in mathematics. Analytic Aristotelian logic has traditionally claimed uniqueness, most recently in its Fregean and post-Fregean variants. Dialectical logic was first proposed by Hegel. The account presented here cuts through the dense, often incomprehensible Hegelian text. Oceanic logic was never identified as such, but the author gives numerous examples of its use from the history of philosophy. The final chapter addresses the plurality of the three theories and of how we should deal with it. The author first worked in analytic logic in the 1970s and 1980s, first researched dialectical logic in the 1990s, and discovered oceanic logic in the 2000s. This book represents the culmination of reflections that have lasted an entire scholarly career.
In this book the authors present an alternative set theory dealing with a more relaxed notion of infiniteness, called finitely supported mathematics (FSM). It has strong connections to the Fraenkel-Mostowski (FM) permutative model of Zermelo-Fraenkel (ZF) set theory with atoms and to the theory of (generalized) nominal sets. More exactly, FSM is ZF mathematics rephrased in terms of finitely supported structures, where the set of atoms is infinite (not necessarily countable as for nominal sets). In FSM, 'sets' are replaced either by `invariant sets' (sets endowed with some group actions satisfying a finite support requirement) or by `finitely supported sets' (finitely supported elements in the powerset of an invariant set). It is a theory of `invariant algebraic structures' in which infinite algebraic structures are characterized by using their finite supports. After explaining the motivation for using invariant sets in the experimental sciences as well as the connections with the nominal approach, admissible sets and Gandy machines (Chapter 1), the authors present in Chapter 2 the basics of invariant sets and show that the principles of constructing FSM have historical roots both in the definition of Tarski `logical notions' and in the Erlangen Program of Klein for the classification of various geometries according to invariants under suitable groups of transformations. Furthermore, the consistency of various choice principles is analyzed in FSM. Chapter 3 examines whether it is possible to obtain valid results by replacing the notion of infinite sets with the notion of invariant sets in the classical ZF results. The authors present techniques for reformulating ZF properties of algebraic structures in FSM. In Chapter 4 they generalize FM set theory by providing a new set of axioms inspired by the theory of amorphous sets, and so defining the extended Fraenkel-Mostowski (EFM) set theory. In Chapter 5 they define FSM semantics for certain process calculi (e.g., fusion calculus), and emphasize the links to the nominal techniques used in computer science. They demonstrate a complete equivalence between the new FSM semantics (defined by using binding operators instead of side conditions for presenting the transition rules) and the known semantics of these process calculi. The book is useful for researchers and graduate students in computer science and mathematics, particularly those engaged with logic and set theory.
This book provides an overview of the confluence of ideas in Turing's era and work and examines the impact of his work on mathematical logic and theoretical computer science. It combines contributions by well-known scientists on the history and philosophy of computability theory as well as on generalised Turing computability. By looking at the roots and at the philosophical and technical influence of Turing's work, it is possible to gather new perspectives and new research topics which might be considered as a continuation of Turing's working ideas well into the 21st century. The Stored-Program Universal Computer: Did Zuse Anticipate Turing and von Neumann?" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com
If we take mathematical statements to be true, then must we also believe in the existence of invisible mathematical objects, accessible only by the power of thought? Jody Azzouni says we do not, and claims that the way to escape such a commitment is to accept - as an essential part of scientific doctrine - true statesments which are 'about' objects which don't exist in any real sense.
The notion of an ( ,1)-category has become widely used in homotopy theory, category theory, and in a number of applications. There are many different approaches to this structure, all of them equivalent, and each with its corresponding homotopy theory. This book provides a relatively self-contained source of the definitions of the different models, the model structure (homotopy theory) of each, and the equivalences between the models. While most of the current literature focusses on how to extend category theory in this context, and centers in particular on the quasi-category model, this book offers a balanced treatment of the appropriate model structures for simplicial categories, Segal categories, complete Segal spaces, quasi-categories, and relative categories, all from a homotopy-theoretic perspective. Introductory chapters provide background in both homotopy and category theory and contain many references to the literature, thus making the book accessible to graduates and to researchers in related areas.
First English translation of revolutionary paper (1931) that established that even in elementary parts of arithmetic, there are propositions which cannot be proved or disproved within the system. It is thus uncertain that the basic axioms of arithmetic will not give rise to contradictions. Introduction by R. B. Braithwaite.
Fuzzy set theory provides a framework for representing uncertainty.
As increasing importance is being given to uncertainty management
in intelligent systems, fuzzy inferencing procedures are vital.
Using Fest (Fuzzy Expert System Tools), the authors focus on the
parameters of fuzzy rule-based systems. The book then goes on to
show how Fest can be used for inference of indistinct data and
algorithmic descriptions. Divided into three parts, this
comprehensive text covers the characteristics of expert systems and
fuzzy sets theory, knowledge representation and the inference
process. Features include:
Hex: The Full Story is for anyone - hobbyist, professional, student, teacher - who enjoys board games, game theory, discrete math, computing, or history. hex was discovered twice, in 1942 by Piet Hein and again in 1949 by John F. nash. How did this happen? Who created the puzzle for Hein's Danish newspaper column? How are Martin Gardner, David Gale, Claude Shannon, and Claude Berge involved? What is the secret to playing Hex well? The answers are inside... Features New documents on Hein's creation of Hex, the complete set of Danish puzzles, and the identity of their composer Chapters on Gale's game Bridg-it, the game Rex, computer Hex, open Hex problems, and more Dozens of new puzzles and solutions Study guide for Hex players Supplemenetary text for a course in game theory, discrete math, computer science, or science history
Conditional reasoning is reasoning that involves statements of the sort If A (Antecedent) then C (Consequent). This type of reasoning is ubiquitous; everyone engages in it. Indeed, the ability to do so may be considered a defining human characteristic. Without this ability, human cognition would be greatly impoverished. "What-if" thinking could not occur. There would be no retrospective efforts to understand history by imagining how it could have taken a different course. Decisions that take possible contingencies into account could not be made; there could be no attempts to influence the future by selecting actions on the basis of their expected effects. Despite the commonness and importance of conditional reasoning and the considerable attention it has received from scholars, it remains the subject of much continuing debate. Unsettled questions, both normative and empirical, continue to be asked. What constitutes normative conditional reasoning? How do people engage in it? Does what people do match what would be expected of a rational agent with the abilities and limitations of human beings? If not, how does it deviate and how might people's ability to engage in it be improved? This book reviews the work of prominent psychologists and philosophers on conditional reasoning. It describes empirical research on how people deal with conditional arguments and on how conditional statements are used and interpreted in everyday communication. It examines philosophical and theoretical treatments of the mental processes that support conditional reasoning. Its extensive coverage of the subject makes it an ideal resource for students, teachers, and researchers with a focus on cognition across disciplines.
This book brings together contributions by leading researchers in computational complexity theory written in honor of Somenath Biswas on the occasion of his sixtieth birthday. They discuss current trends and exciting developments in this flourishing area of research and offer fresh perspectives on various aspects of complexity theory. The topics covered include arithmetic circuit complexity, lower bounds and polynomial identity testing, the isomorphism conjecture, space-bounded computation, graph isomorphism, resolution and proof complexity, entropy and randomness. Several chapters have a tutorial flavor. The aim is to make recent research in these topics accessible to graduate students and senior undergraduates in computer science and mathematics. It can also be useful as a resource for teaching advanced level courses in computational complexity.
Edited in collaboration with FoLLI, the Association of Logic, Language and Information this book constitutes the refereed proceedings of the 23rd Workshop on Logic, Language, Information and Communication, WoLLIC 2016, held in Puebla, Mexico, in August 2016.The 23 contributed papers, presented together with 9 invited lectures and tutorials, were carefully reviewed and selected from 33 submissions. The focus of the workshop is to provide a forum on inter-disciplinary research involving formal logic, computing and programming theory, and natural language and reasoning.
Fundamentals of Linear Algebra is like no other book on the subject. By following a natural and unified approach to the subject it has, in less than 250 pages, achieved a more complete coverage of the subject than books with more than twice as many pages. For example, the textbooks in use in the United States prove the existence of a basis only for finite dimensional vector spaces. This book proves it for any given vector space. With his experience in algebraic geometry and commutative algebra, the author defines the dimension of a vector space as its Krull dimension. By doing so, most of the facts about bases when the dimension is finite, are trivial consequences of this definition. To name one, the replacement theorem is no longer needed. It becomes obvious that any two bases of a finite dimensional vector space contain the same number of vectors. Moreover, this definition of the dimension works equally well when the geometric objects are nonlinear. Features: Presents theories and applications in an attempt to raise expectations and outcomes The subject of linear algebra is presented over arbitrary fields Includes many non-trivial examples which address real-world problems
Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. This volume, the twelfth publication in the Lecture Notes in Logic series, collects the proceedings of the European Summer Meeting of the Association of Symbolic Logic, held at the University of the Basque Country, San Sebastian in July 1996. The main topics were model theory, proof theory, recursion and complexity theory, models of arithmetic, logic for artificial intelligence, formal semantics of natural language, and philosophy of contemporary logic. The volume includes eleven papers from pre-eminent researchers in mathematical logic.
Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. In this volume, the first publication in the Lecture Notes in Logic series, Shoenfield gives a clear and focused introduction to recursion theory. The fundamental concept of recursion makes the idea of computability accessible to a mathematical analysis, thus forming one of the pillars on which modern computer science rests. This introduction is an ideal instrument for teaching and self-study that prepares the reader for the study of advanced monographs and the current literature on recursion theory.
Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. This volume, the eighth publication in the Perspectives in Logic series, brings together several directions of work in model theory between the late 1950s and early 1980s. It contains expository papers by pre-eminent researchers. Part I provides an introduction to the subject as a whole, as well as to the basic theory and examples. The rest of the book addresses finitary languages with additional quantifiers, infinitary languages, second-order logic, logics of topology and analysis, and advanced topics in abstract model theory. Many chapters can be read independently.
Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. This volume, the second publication in the Lecture Notes in Logic series, is the proceedings of the Association for Symbolic Logic meeting held in Helsinki, Finland, in July 1990. It contains eighteen papers by leading researchers, covering all fields of mathematical logic from the philosophy of mathematics, through model theory, proof theory, recursion theory, and set theory, to the connections of logic to computer science. The articles published here are still widely cited and continue to provide ideas for ongoing research projects.
Fascinating connections exist between group theory and automata theory, and a wide variety of them are discussed in this text. Automata can be used in group theory to encode complexity, to represent aspects of underlying geometry on a space on which a group acts, and to provide efficient algorithms for practical computation. There are also many applications in geometric group theory. The authors provide background material in each of these related areas, as well as exploring the connections along a number of strands that lead to the forefront of current research in geometric group theory. Examples studied in detail include hyperbolic groups, Euclidean groups, braid groups, Coxeter groups, Artin groups, and automata groups such as the Grigorchuk group. This book will be a convenient reference point for established mathematicians who need to understand background material for applications, and can serve as a textbook for research students in (geometric) group theory.
Gerhard Gentzen has been described as logic's lost genius, whom Goedel called a better logician than himself. This work comprises articles by leading proof theorists, attesting to Gentzen's enduring legacy to mathematical logic and beyond. The contributions range from philosophical reflections and re-evaluations of Gentzen's original consistency proofs to the most recent developments in proof theory. Gentzen founded modern proof theory. His sequent calculus and natural deduction system beautifully explain the deep symmetries of logic. They underlie modern developments in computer science such as automated theorem proving and type theory.
This second volume of a collection of papers offers new perspectives and challenges in the study of logic. It is presented in honor of the fiftieth birthday of Jean-Yves Beziau. The papers touch upon a wide range of topics including paraconsistent logic, quantum logic, geometry of oppositions, categorical logic, computational logic, fundamental logic notions (identity, rule, quantification) and history of logic (Leibniz, Peirce, Hilbert). The volume gathers personal recollections about Jean-Yves Beziau and an autobiography, followed by 25 papers written by internationally distinguished logicians, mathematicians, computer scientists, linguists and philosophers, including Irving Anellis, Dov Gabbay, Ivor Grattan-Guinness, Istvan Nemeti, Henri Prade. These essays will be of interest to all students and researchers interested in the nature and future of logic.
This book offers an original contribution to the foundations of logic and mathematics and focuses on the internal logic of mathematical theories, from arithmetic or number theory to algebraic geometry. Arithmetical logic is the term used to refer to the internal logic of classical arithmetic, here called Fermat-Kronecker arithmetic and combines Fermat's method of infinite descent with Kronecker's general arithmetic of homogeneous polynomials. The book also includes a treatment of theories in physics and mathematical physics to underscore the role of arithmetic from a constructivist viewpoint. The scope of the work intertwines historical, mathematical, logical and philosophical dimensions in a unified critical perspective; as such, it will appeal to a broad readership from mathematicians to logicians, to philosophers interested in foundational questions. Researchers and graduate students in the fields of philosophy and mathematics will benefit from the author's critical approach to the foundations of logic and mathematics.
George Gratzer's Lattice Theory: Foundation is his third book on lattice theory (General Lattice Theory, 1978, second edition, 1998). In 2009, Gratzer considered updating the second edition to reflect some exciting and deep developments. He soon realized that to lay the foundation, to survey the contemporary field, to pose research problems, would require more than one volume and more than one person. So Lattice Theory: Foundation provided the foundation. Now we complete this project with Lattice Theory: Special Topics and Applications, written by a distinguished group of experts, to cover some of the vast areas not in Foundation. This first volume is divided into three parts. Part I. Topology and Lattices includes two chapters by Klaus Keimel, Jimmie Lawson and Ales Pultr, Jiri Sichler. Part II. Special Classes of Finite Lattices comprises four chapters by Gabor Czedli, George Gratzer and Joseph P. S. Kung. Part III. Congruence Lattices of Infinite Lattices and Beyond includes four chapters by Friedrich Wehrung and George Gratzer.
..."The book, written by one of the main researchers on the field, gives a complete account of the theory of r.e. degrees. .... The definitions, results and proofs are always clearly motivated and explained before the formal presentation; the proofs are described with remarkable clarity and conciseness. The book is highly recommended to everyone interested in logic. It also provides a useful background to computer scientists, in particular to theoretical computer scientists." Acta Scientiarum Mathematicarum, Ungarn 1988 ..."The main purpose of this book is to introduce the reader to the main results and to the intricacies of the current theory for the recurseively enumerable sets and degrees. The author has managed to give a coherent exposition of a rather complex and messy area of logic, and with this book degree-theory is far more accessible to students and logicians in other fields than it used to be." Zentralblatt fur Mathematik, 623.1988
Is the continuum hypothesis still open? If we interpret it as finding the laws of cardinal arithmetic (really exponentiation since addition and multiplication were classically solved), it was thought to be essentially solved by the independence results of Goedel and Cohen (and Easton) with some isolated positive results (like Galvin-Hajnal). It was expected that only more independence results remained to be proved. The author has come to change his view: we should stress ]*N0 (not 2] ) and mainly look at the cofinalities rather than cardinalities, in particular pp (), pcf ( ). Their properties are investigated here and conventional cardinal arithmetic is reduced to 2]*N (*N - regular, cases totally independent) and various cofinalities. This enables us to get new results for the conventional cardinal arithmetic, thus supporting the interest in our view. We also find other applications, extend older methods of using normal fiters and prove the existence of Jonsson algebra. |
![]() ![]() You may like...
Blockchain Applications in IoT Ecosystem
Tanupriya Choudhury, Abhirup Khanna, …
Hardcover
R3,650
Discovery Miles 36 500
Energy Efficiency in Data Centers and…
Suyel Namasudra, Hamid Sarbazi-Azad
Hardcover
Practical Industrial Data Communications…
Deon Reynders, Steve Mackay, …
Paperback
R1,539
Discovery Miles 15 390
Computer Vision in Control Systems-4…
Margarita N. Favorskaya, Lakhmi C. Jain
Hardcover
R2,941
Discovery Miles 29 410
|