![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Mathematical foundations > Mathematical logic
Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. In this volume, the fifth publication in the Lecture Notes in Logic series, the authors give an insightful introduction to the fascinating subject of the model theory of fields, concentrating on its connections to stability theory. In the first two chapters David Marker gives an overview of the model theory of algebraically closed, real closed and differential fields. In the third chapter Anand Pillay gives a proof that there are 2 non-isomorphic countable differential closed fields. Finally, Margit Messmer gives a survey of the model theory of separably closed fields of characteristic p > 0.
This book is a modern introduction to model theory which stresses applications to algebra throughout the text. The first half of the book includes classical material on model construction techniques, type spaces, prime models, saturated models, countable models, and indiscernibles and their applications. The author also includes an introduction to stability theory beginning with Morley's Categoricity Theorem and concentrating on omega-stable theories. One significant aspect of this text is the inclusion of chapters on important topics not covered in other introductory texts, such as omega-stable groups and the geometry of strongly minimal sets. The author then goes on to illustrate how these ingredients are used in Hrushovski's applications to diophantine geometry. David Marker is Professor of Mathematics at the University of Illinois at Chicago. His main area of research involves mathematical logic and model theory, and their applications to algebra and geometry. This book was developed from a series of lectures given by the author at the Mathematical Sciences Research Institute in 1998.
In mathematics, we know there are some concepts - objects, constructions, structures, proofs - that are more complex and difficult to describe than others. Computable structure theory quantifies and studies the complexity of mathematical structures, structures such as graphs, groups, and orderings. Written by a contemporary expert in the subject, this is the first full monograph on computable structure theory in 20 years. Aimed at graduate students and researchers in mathematical logic, it brings new results of the author together with many older results that were previously scattered across the literature and presents them all in a coherent framework, making it easier for the reader to learn the main results and techniques in the area for application in their own research. This volume focuses on countable structures whose complexity can be measured within arithmetic; a forthcoming second volume will study structures beyond arithmetic.
A concise yet rigorous introduction to logic and discrete mathematics. This book features a unique combination of comprehensive coverage of logic with a solid exposition of the most important fields of discrete mathematics, presenting material that has been tested and refined by the authors in university courses taught over more than a decade. The chapters on logic - propositional and first-order - provide a robust toolkit for logical reasoning, emphasizing the conceptual understanding of the language and the semantics of classical logic as well as practical applications through the easy to understand and use deductive systems of Semantic Tableaux and Resolution. The chapters on set theory, number theory, combinatorics and graph theory combine the necessary minimum of theory with numerous examples and selected applications. Written in a clear and reader-friendly style, each section ends with an extensive set of exercises, most of them provided with complete solutions which are available in the accompanying solutions manual. Key Features : Suitable for a variety of courses for students in both Mathematics and Computer Science. Extensive, in-depth coverage of classical logic, combined with a solid exposition of a selection of the most important fields of discrete mathematics Concise, clear and uncluttered presentation with numerous examples. Covers some applications including cryptographic systems, discrete probability and network algorithms. Logic and Discrete Mathematics: A Concise Introduction is aimed mainly at undergraduate courses for students in mathematics and computer science, but the book will also be a valuable resource for graduate modules and for self-study.
Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. In this volume, the fourth publication in the Lecture Notes in Logic series, Miller develops the necessary features of the theory of descriptive sets in order to present a new proof of Louveau's separation theorem for analytic sets. While some background in mathematical logic and set theory is assumed, the material is based on a graduate course given by the author at the University of Wisconsin, Madison, and is thus accessible to students and researchers alike in these areas, as well as in mathematical analysis.
Blockchain, Internet of Things, and Artificial Intelligence provides an integrated overview and technical description of the fundamental concepts of blockchain, IoT, and AI technologies. State-of-the-art techniques are explored in depth to discuss the challenges in each domain. The convergence of these revolutionized technologies has leveraged several areas that receive attention from academicians and industry professionals, which in turn promotes the book's accessibility more extensively. Discussions about an integrated perspective on the influence of blockchain, IoT, and AI for smart cities, healthcare, and other business sectors illuminate the benefits and opportunities in the ecosystems worldwide. The contributors have focused on real-world examples and applications and highlighted the significance of the strengths of blockchain to transform the readers' thinking toward finding potential solutions. The faster maturity and stability of blockchain is the key differentiator in artificial intelligence and the Internet of Things. This book discusses their potent combination in realizing intelligent systems, services, and environments. The contributors present their technical evaluations and comparisons with existing technologies. Theoretical explanations and experimental case studies related to real-time scenarios are also discussed. FEATURES Discusses the potential of blockchain to significantly increase data while boosting accuracy and integrity in IoT-generated data and AI-processed information Elucidates definitions, concepts, theories, and assumptions involved in smart contracts and distributed ledgers related to IoT systems and AI approaches Offers real-world uses of blockchain technologies in different IoT systems and further studies its influence in supply chains and logistics, the automotive industry, smart homes, the pharmaceutical industry, agriculture, and other areas Presents readers with ways of employing blockchain in IoT and AI, helping them to understand what they can and cannot do with blockchain Provides readers with an awareness of how industry can avoid some of the pitfalls of traditional data-sharing strategies This book is suitable for graduates, academics, researchers, IT professionals, and industry experts.
Is mathematics 'entangled' with its various formalisations? Or are the central concepts of mathematics largely insensitive to formalisation, or 'formalism free'? What is the semantic point of view and how is it implemented in foundational practice? Does a given semantic framework always have an implicit syntax? Inspired by what she calls the 'natural language moves' of Goedel and Tarski, Juliette Kennedy considers what roles the concepts of 'entanglement' and 'formalism freeness' play in a range of logical settings, from computability and set theory to model theory and second order logic, to logicality, developing an entirely original philosophy of mathematics along the way. The treatment is historically, logically and set-theoretically rich, and topics such as naturalism and foundations receive their due, but now with a new twist.
Present book covers new paradigms in Blockchain, Big Data and Machine Learning concepts including applications and case studies. It explains dead fusion in realizing the privacy and security of blockchain based data analytic environment. Recent research of security based on big data, blockchain and machine learning has been explained through actual work by practitioners and researchers, including their technical evaluation and comparison with existing technologies. The theoretical background and experimental case studies related to real-time environment are covered as well. Aimed at Senior undergraduate students, researchers and professionals in computer science and engineering and electrical engineering, this book: Converges Blockchain, Big Data and Machine learning in one volume. Connects Blockchain technologies with the data centric applications such Big data and E-Health. Easy to understand examples on how to create your own blockchain supported by case studies of blockchain in different industries. Covers big data analytics examples using R. Includes lllustrative examples in python for blockchain creation.
The completion of the first draft of the human genome has led to an explosion of interest in genetics and molecular biology. The view of the genome as a network of interacting computational components is well-established, but researchers are now trying to reverse the analogy, by using living organisms to construct logic circuits. The potential applications for such technologies is huge, ranging from bio-sensors, through industrial applications to drug delivery and diagnostics. This book would be the first to deal with the implementation of this technology, describing several working experimental demonstrations using cells as components of logic circuits, building toward computers incorporating biological components in their functioning.
This book presents an intuitive picture-oriented approach to the formative processes technique and to its applications. In the first part the authors introduce basic set-theoretic terminology and properties, the decision problem in set theory, and formative processes. The second part of the book is devoted to applications of the technique of formative processes to decision problems. All chapters contain exercises and the book is appropriate for researchers and graduate students in the area of computer science logic.
This book gathers the proceedings of the conference "Cultures of Mathematics and Logic," held in Guangzhou, China. The event was the third in a series of interdisciplinary, international conferences emphasizing the cultural components of philosophy of mathematics and logic. It brought together researchers from many disciplines whose work sheds new light on the diversity of mathematical and logical cultures and practices. In this context, the cultural diversity can be diachronical (different cultures in different historical periods), geographical (different cultures in different regions), or sociological in nature.
Turing's famous 1936 paper introduced a formal definition of a computing machine, a Turing machine. This model led to both the development of actual computers and to computability theory, the study of what machines can and cannot compute. This book presents classical computability theory from Turing and Post to current results and methods, and their use in studying the information content of algebraic structures, models, and their relation to Peano arithmetic. The author presents the subject as an art to be practiced, and an art in the aesthetic sense of inherent beauty which all mathematicians recognize in their subject. Part I gives a thorough development of the foundations of computability, from the definition of Turing machines up to finite injury priority arguments. Key topics include relative computability, and computably enumerable sets, those which can be effectively listed but not necessarily effectively decided, such as the theorems of Peano arithmetic. Part II includes the study of computably open and closed sets of reals and basis and nonbasis theorems for effectively closed sets. Part III covers minimal Turing degrees. Part IV is an introduction to games and their use in proving theorems. Finally, Part V offers a short history of computability theory. The author has honed the content over decades according to feedback from students, lecturers, and researchers around the world. Most chapters include exercises, and the material is carefully structured according to importance and difficulty. The book is suitable for advanced undergraduate and graduate students in computer science and mathematics and researchers engaged with computability and mathematical logic.
This volume covers a wide range of topics in the most recent debates in the philosophy of mathematics, and is dedicated to how semantic, epistemological, ontological and logical issues interact in the attempt to give a satisfactory picture of mathematical knowledge. The essays collected here explore the semantic and epistemic problems raised by different kinds of mathematical objects, by their characterization in terms of axiomatic theories, and by the objectivity of both pure and applied mathematics. They investigate controversial aspects of contemporary theories such as neo-logicist abstractionism, structuralism, or multiversism about sets, by discussing different conceptions of mathematical realism and rival relativistic views on the mathematical universe. They consider fundamental philosophical notions such as set, cardinal number, truth, ground, finiteness and infinity, examining how their informal conceptions can best be captured in formal theories. The philosophy of mathematics is an extremely lively field of inquiry, with extensive reaches in disciplines such as logic and philosophy of logic, semantics, ontology, epistemology, cognitive sciences, as well as history and philosophy of mathematics and science. By bringing together well-known scholars and younger researchers, the essays in this collection - prompted by the meetings of the Italian Network for the Philosophy of Mathematics (FilMat) - show how much valuable research is currently being pursued in this area, and how many roads ahead are still open for promising solutions to long-standing philosophical concerns. Promoted by the Italian Network for the Philosophy of Mathematics - FilMat
This book presents a collection of contributions from related logics to applied paraconsistency. Moreover, all of them are dedicated to Jair Minoro Abe,on the occasion of his sixtieth birthday. He is one of the experts in Paraconsistent Engineering, who developed the so-called annotated logics. The book includes important contributions on foundations and applications of paraconsistent logics in connection with engineering, mathematical logic, philosophical logic, computer science, physics, economics, and biology. It will be of interest to students and researchers, who are working on engineering and logic.
This book covers new aspects and frameworks of control, design, and optimization based on the TP model transformation and its various extensions. The author outlines the three main steps of polytopic and LMI based control design: 1) development of the qLPV state-space model, 2) generation of the polytopic model; and 3) application of LMI to derive controller and observer. He goes on to describe why literature has extensively studied LMI design, but has not focused much on the second step, in part because the generation and manipulation of the polytopic form was not tractable in many cases. The author then shows how the TP model transformation facilitates this second step and hence reveals new directions, leading to powerful design procedures and the formulation of new questions. The chapters of this book, and the complex dynamical control tasks which they cover, are organized so as to present and analyze the beneficial aspect of the family of approaches (control, design, and optimization). Additionally, the book aims to convey simple TP modeling; a new convex hull manipulation based possibilities for optimization; a general framework for stability analysis; standardized modeling and system description; relaxed and universal LMI based design framework; and a gateway to time-delayed systems.
In this volume, different aspects of logics for dependence and independence are discussed, including both the logical and computational aspects of dependence logic, and also applications in a number of areas, such as statistics, social choice theory, databases, and computer security. The contributing authors represent leading experts in this relatively new field, each of whom was invited to write a chapter based on talks given at seminars held at the Schloss Dagstuhl Leibniz Center for Informatics in Wadern, Germany (in February 2013 and June 2015) and an Academy Colloquium at the Royal Netherlands Academy of Arts and Sciences (March 2014). Altogether, these chapters provide the most up-to-date look at this developing and highly interdisciplinary field and will be of interest to a broad group of logicians, mathematicians, statisticians, philosophers, and scientists. Topics covered include a comprehensive survey of many propositional, modal, and first-order variants of dependence logic; new results concerning expressive power of several variants of dependence logic with different sets of logical connectives and generalized dependence atoms; connections between inclusion logic and the least-fixed point logic; an overview of dependencies in databases by addressing the relationships between implication problems for fragments of statistical conditional independencies, embedded multivalued dependencies, and propositional logic; various Markovian models used to characterize dependencies and causality among variables in multivariate systems; applications of dependence logic in social choice theory; and an introduction to the theory of secret sharing, pointing out connections to dependence and independence logic.
The aim of this volume is to collect original contributions by the best specialists from the area of proof theory, constructivity, and computation and discuss recent trends and results in these areas. Some emphasis will be put on ordinal analysis, reductive proof theory, explicit mathematics and type-theoretic formalisms, and abstract computations. The volume is dedicated to the 60th birthday of Professor Gerhard Jager, who has been instrumental in shaping and promoting logic in Switzerland for the last 25 years. It comprises contributions from the symposium "Advances in Proof Theory", which was held in Bern in December 2013. Proof theory came into being in the twenties of the last century, when it was inaugurated by David Hilbert in order to secure the foundations of mathematics. It was substantially influenced by Goedel's famous incompleteness theorems of 1930 and Gentzen's new consistency proof for the axiom system of first order number theory in 1936. Today, proof theory is a well-established branch of mathematical and philosophical logic and one of the pillars of the foundations of mathematics. Proof theory explores constructive and computational aspects of mathematical reasoning; it is particularly suitable for dealing with various questions in computer science.
This volume offers a wide range of both reconstructions of Nikolai Vasiliev's original logical ideas and their implementations in the modern logic and philosophy. A collection of works put together through the international workshop "Nikolai Vasiliev's Logical Legacy and the Modern Logic," this book also covers foundations of logic in the light of Vasiliev's contradictory ontology. Chapters range from a look at the Heuristic and Conceptual Background of Vasiliev's Imaginary Logic to Generalized Vasiliev-style Propositions. It includes works which cover Imaginary and Non-Aristotelian Logics, Inconsistent Set Theory and the Expansion of Mathematical Thinking, Plurivalent Logic, and the Impact of Vasiliev's Imaginary Logic on Epistemic Logic. The Russian logician, Vasiliev, was widely recognized as one of the forerunners of modern non-classical logic. His "imaginary logic" developed in some of his work at the beginning of 20th century is often considered to be one of the first systems of paraconsistent and multi-valued logic. The novelty of his logical project has opened up prospects for modern logic as well as for non-classical science in general. This volume contains a selection of papers written by modern specialists in the field and deals with various aspects of Vasiliev's logical ideas. The logical legacy of Nikolai Vasiliev can serve as a promising source for developing an impressive range of philosophical interpretations, as it marries promising technical innovations with challenging philosophical insights.
The book answers long-standing questions on scientific modeling and inference across multiple perspectives and disciplines, including logic, mathematics, physics and medicine. The different chapters cover a variety of issues, such as the role models play in scientific practice; the way science shapes our concept of models; ways of modeling the pursuit of scientific knowledge; the relationship between our concept of models and our concept of science. The book also discusses models and scientific explanations; models in the semantic view of theories; the applicability of mathematical models to the real world and their effectiveness; the links between models and inferences; and models as a means for acquiring new knowledge. It analyzes different examples of models in physics, biology, mathematics and engineering. Written for researchers and graduate students, it provides a cross-disciplinary reference guide to the notion and the use of models and inferences in science.
The book is a collection of contributions by leading experts, developed around traditional themes discussed at the annual Linz Seminars on Fuzzy Set Theory. The different chapters have been written by former PhD students, colleagues, co-authors and friends of Peter Klement, a leading researcher and the organizer of the Linz Seminars on Fuzzy Set Theory. The book also includes advanced findings on topics inspired by Klement's research activities, concerning copulas, measures and integrals, as well as aggregation problems. Some of the chapters reflect personal views and controversial aspects of traditional topics, while others deal with deep mathematical theories, such as the algebraic and logical foundations of fuzzy set theory and fuzzy logic. Originally thought as an homage to Peter Klement, the book also represents an advanced reference guide to the mathematical theories related to fuzzy logic and fuzzy set theory with the potential to stimulate important discussions on new research directions in the field.
Raymond Smullyan presents a bombshell puzzle so startling that it seems incredible that there could be any solution at all! But there is indeed a solution - moreover, one that requires a chain of lesser puzzles to be solved first. The reader is thus taken on a journey through a maze of subsidiary problems that has all the earmarks of an entertaining detective story.This book leads the unwary reader into deep logical waters through seductively entertaining logic puzzles. One example is Boolean algebra with such weird looking equations as 1+1=0 - a subject which today plays a vital role, not only in mathematical systems, but also in computer science and artificial intelligence.
This monograph presents an application of concepts and methods from algebraic topology to models of concurrent processes in computer science and their analysis. Taking well-known discrete models for concurrent processes in resource management as a point of departure, the book goes on to refine combinatorial and topological models. In the process, it develops tools and invariants for the new discipline directed algebraic topology, which is driven by fundamental research interests as well as by applications, primarily in the static analysis of concurrent programs. The state space of a concurrent program is described as a higher-dimensional space, the topology of which encodes the essential properties of the system. In order to analyse all possible executions in the state space, more than "just" the topological properties have to be considered: Execution paths need to respect a partial order given by the time flow. As a result, tools and concepts from topology have to be extended to take privileged directions into account. The target audience for this book consists of graduate students, researchers and practitioners in the field, mathematicians and computer scientists alike.
Numerical computation, knowledge discovery and statistical data analysis integrated with powerful 2D and 3D graphics for visualization are the key topics of this book. The Python code examples powered by the Java platform can easily be transformed to other programming languages, such as Java, Groovy, Ruby and BeanShell. This book equips the reader with a computational platform which, unlike other statistical programs, is not limited by a single programming language.The author focuses on practical programming aspects and covers a broad range of topics, from basic introduction to the Python language on the Java platform (Jython), to descriptive statistics, symbolic calculations, neural networks, non-linear regression analysis and many other data-mining topics. He discusses how to find regularities in real-world data, how to classify data, and how to process data for knowledge discoveries. The code snippets are so short that they easily fit into single pages. Numeric Computation and Statistical Data Analysis on the Java Platform is a great choice for those who want to learn how statistical data analysis can be done using popular programming languages, who want to integrate data analysis algorithms in full-scale applications, and deploy such calculations on the web pages or computational servers regardless of their operating system. It is an excellent reference for scientific computations to solve real-world problems using a comprehensive stack of open-source Java libraries included in the DataMelt (DMelt) project and will be appreciated by many data-analysis scientists, engineers and students.
The prize-winning essays in this book address the fascinating but sometimes uncomfortable relationship between physics and mathematics. Is mathematics merely another natural science? Or is it the result of human creativity? Does physics simply wear mathematics like a costume, or is math the lifeblood of physical reality? The nineteen wide-ranging, highly imaginative and often entertaining essays are enhanced versions of the prize-winning entries to the FQXi essay competition "Trick or Truth", which attracted over 200 submissions. The Foundational Questions Institute, FQXi, catalyzes, supports, and disseminates research on questions at the foundations of physics and cosmology, particularly new frontiers and innovative ideas integral to a deep understanding of reality, but unlikely to be supported by conventional funding sources.
The present book is an introduction to the philosophy of mathematics. It asks philosophical questions concerning fundamental concepts, constructions and methods - this is done from the standpoint of mathematical research and teaching. It looks for answers both in mathematics and in the philosophy of mathematics from their beginnings till today. The reference point of the considerations is the introducing of the reals in the 19th century that marked an epochal turn in the foundations of mathematics. In the book problems connected with the concept of a number, with the infinity, the continuum and the infinitely small, with the applicability of mathematics as well as with sets, logic, provability and truth and with the axiomatic approach to mathematics are considered. In Chapter 6 the meaning of infinitesimals to mathematics and to the elements of analysis is presented. The authors of the present book are mathematicians. Their aim is to introduce mathematicians and teachers of mathematics as well as students into the philosophy of mathematics. The book is suitable also for professional philosophers as well as for students of philosophy, just because it approaches philosophy from the side of mathematics. The knowledge of mathematics needed to understand the text is elementary. Reports on historical conceptions. Thinking about today's mathematical doing and thinking. Recent developments. Based on the third, revised German edition. For mathematicians - students, teachers, researchers and lecturers - and readersinterested in mathematics and philosophy. Contents On the way to the reals On the history of the philosophy of mathematics On fundamental questions of the philosophy of mathematics Sets and set theories Axiomatic approach and logic Thinking and calculating infinitesimally - First nonstandard steps Retrospection |
![]() ![]() You may like...
Fuzzy Systems - Concepts, Methodologies…
Information Reso Management Association
Hardcover
R10,221
Discovery Miles 102 210
Temporal Logic: From Philosophy And…
Klaus Mainzer, Stefania Centrone
Hardcover
R2,051
Discovery Miles 20 510
|