![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Mathematical foundations > Mathematical logic
This open access book makes a case for extending logic beyond its traditional boundaries, to encompass not only statements but also also questions. The motivations for this extension are examined in detail. It is shown that important notions, including logical answerhood and dependency, emerge as facets of the fundamental notion of entailment once logic is extended to questions, and can therefore be treated with the logician's toolkit, including model-theoretic constructions and proof systems. After motivating the enterprise, the book describes how classical propositional and predicate logic can be made inquisitive-i.e., extended conservatively with questions-and what the resulting logics look like in terms of meta-theoretic properties and proof systems. Finally, the book discusses the tight connections between inquisitive logic and dependence logic.
This book explores an important central thread that unifies Russell's thoughts on logic in two works previously considered at odds with each other, the Principles of Mathematics and the later Principia Mathematica. This thread is Russell's doctrine that logic is an absolutely general science and that any calculus for it must embrace wholly unrestricted variables. The heart of Landini's book is a careful analysis of Russell's largely unpublished "substitutional" theory. On Landini's showing, the substitutional theory reveals the unity of Russell's philosophy of logic and offers new avenues for a genuine solution of the paradoxes plaguing Logicism.
Kurt Gödel was the most outstanding logician of the 20th century and a giant in the field. This book is part of a five volume set that makes available all of Gödels writings. The first three volumes, already published, consist of the papers and essays of Gödel. The final two volumes of the set deal with Gödel's correspondence with his contemporary mathematicians, this fifth volume consists of material from correspondents from H-Z.
Volume II, on formal (ZFC) set theory, incorporates a self-contained "chapter 0" on proof techniques so that it is based on formal logic, in the style of Bourbaki. The emphasis on basic techniques provides a solid foundation in set theory and a thorough context for the presentation of advanced topics (such as absoluteness, relative consistency results, two expositions of Godel's construstive universe, numerous ways of viewing recursion and Cohen forcing).
Modern applications of logic, in mathematics, theoretical computer science, and linguistics, require combined systems involving many different logics working together. In this book the author offers a basic methodology for combining - or fibring - systems. This means that many existing complex systems can be broken down into simpler components, hence making them much easier to manipulate.
Kurt Gödel was the most outstanding logician of the 20th century and a giant in the field. This book is part of a five volume set that makes available all of Gödels writings. The first three volumes, already published, consist of the papers and essays of Gödel. The final two volumes of the set deal with Gödel's correspondence with his contemporary mathematicians, this fourth volume consists of material from correspondents from A-G.
This two-volume work bridges the gap between introductory expositions of logic (or set theory) and the research literature. It can be used as a text in an advanced undergraduate or beginning graduate course in mathematics, computer science, or philosophy. The volumes are written in a user-friendly lecture style that makes them equally effective for self-study or class use. Volume I includes formal proof techniques, applications of compactness (including nonstandard analysis), computability and its relation to the completeness phenonmenon, and the first presentation of a complete proof of Godel's 2nd incompleteness since Hilbert and Bernay's Grundlagen.
This book presents several recent advances in natural language semantics and explores the boundaries between syntax and semantics over the last two decades. It is based on some of the most recent theories in logic, such as linear logic and ludics, first created by Jean-Yves Girard, and it also provides some sharp analyses of computational semantical representations, explaining advanced theories in theoretical computer sciences, such as the lambda-mu and Lambek-Grishin calculi which were applied by Philippe de Groote and Michael Moortgat. The author also looks at Aarne Ranta's 'proof as meaning' approach, which was first based on Martin-Loef's Type Theory.Meaning, Logic and Ludics surveys the many solutions which have been proposed for the syntax-semantics interface, taking into account the specifications of linguistic signs (continuous or discontinuous) and the fundamental mechanisms developed by linguists and notable Generativists. This pioneering publication also presents ludics (in a chapter co-authored with Myriam Quatrini), a framework which allows us to characterize meaning as an invariant with regard to interaction between processes. It is an excellent book for advanced students, and academics alike, in the field of computational linguistics.
Computational Thinking (CT) involves fundamental concepts and reasoning, distilled from computer science and other computational sciences, which become powerful general mental tools for solving problems, increasing efficiency, reducing complexity, designing procedures, or interacting with humans and machines. An easy-to-understand guidebook, From Computing to Computational Thinking gives you the tools for understanding and using CT. It does not assume experience or knowledge of programming or of a programming language, but explains concepts and methods for CT with clarity and depth. Successful applications in diverse disciplines have shown the power of CT in problem solving. The book uses puzzles, games, and everyday examples as starting points for discussion and for connecting abstract thinking patterns to real-life situations. It provides an interesting and thought-provoking way to gain general knowledge about modern computing and the concepts and thinking processes underlying modern digital technologies.
The book attempts an elementary exposition of the topics connected with many-valued logics. It gives an account of the constructions being "many-valued" at their origin, i.e. those obtained through intended introduction of logical values next to truth and falsity. To this aim, the matrix method has been chosen as a prevailing manner of presenting the subject. The inquiry throws light upon the profound problem of the criteria of many-valuedness and its classical characterizations. Besides, the reader can find information concerning the main systems of many-valued logic, related axiomatic constructions, and conceptions inspired by many valuedness. The examples of various applications to philosophical logic and some practical domains, as switching theory or Computer Science, helps to see many-valuedness in a wider perspective. Together with a selective bibliography and historical references it makes the work especially useful as a survey and guide in this field of logic.
Mild Cognitive Impairment (MCI) has been identified as an important clinical transition between normal aging and the early stages of Alzheimer's disease (AD). Since treatments for AD are most likely to be most effective early in the course of the disease, MCI has become a topic of great importance and has been investigated in different populations of interest in many countries. This book brings together these differing perspectives on MCI for the first time. This volume provides a comprehensive resource for clinicians, researchers, and students involved in the study, diagnosis, treatment, and rehabilitation of people with MCI. Clinical investigators initially defined mild cognitive impairment (MCI) as a transitional condition between normal aging and the early stages of Alzheimer's disease (AD). Because the prevalence of AD increases with age and very large numbers of older adults are affected worldwide, these clinicians saw a pressing need to identify AD as early as possible. It is at this very early stage in the disease course that treatments to slow the progress and control symptoms are likely to be most effective. Since the first introduction of MCI, research interest has grown exponentially, and the utility of the concept has been investigated from a variety of perspectives in different populations of interest (e.g., clinical samples, volunteers, population-based screening) in many different countries. Much variability in findings has resulted. Although it has been acknowledged that the differences observed between samples may be 'legitimate variations', there has been no attempt to understand what it is we have learned about MCI (i.e., common features and differences) from each of these perspectives. This book brings together information about MCI in different populations from around the world. Mild Cognitive Impairment will be an important resource for any clinician, researcher, or student involved in the study, detection, treatment, and rehabilitation of people with MCI.
The Asian Logic Conference is part of the series of logic conferences inaugurated in Singapore in 1981. It is normally held every three years and rotates among countries in the Asia-Pacific region. The 11th Asian Logic Conference is held in the National University of Singapore, in honour of Professor Chong Chitat on the occasion of his 60th birthday. The conference is on the broad area of logic, including theoretical computer science. It is considered a major event in this field and is regularly sponsored by the Association of Symbolic Logic. This volume contains papers from this meeting.
This is a mathematically-oriented advanced text in modal logic, a discipline conceived in philosophy and having found applications in mathematics, artificial intelligence, linguistics, and computer science. It presents in a systematic and comprehensive way a wide range of classical and novel methods and results and can be used by a specialist as a reference book.
This penultimate volume contains numerous original, elegant, and surprising results in 1-dimensional cellular automata. Perhaps the most exciting, if not shocking, new result is the discovery that only 82 local rules, out of 256, suffice to predict the time evolution of any of the remaining 174 local rules from an arbitrary initial bit-string configuration. This is contrary to the well-known folklore that 256 local rules are necessary, leading to the new concept of quasi-global equivalence.Another surprising result is the introduction of a simple, yet explicit, infinite bit string called the super string S, which contains all random bit strings of finite length as sub-strings. As an illustration of the mathematical subtlety of this amazing discrete testing signal, the super string S is used to prove mathematically, in a trivial and transparent way, that rule 170 is as chaotic as a coin toss.Yet another unexpected new result, among many others, is the derivation of an explicit basin tree generation formula which provides an analytical relationship between the basin trees of globally-equivalent local rules. This formula allows the symbolic, rather than numerical, generation of the time evolution of any local rule corresponding to any initial bit-string configuration, from one of the 88 globally-equivalent local rules.But perhaps the most provocative idea is the proposal for adopting rule 137, over its three globally-equivalent siblings, including the heretofore more well-known rule 110, as the prototypical universal Turing machine.
This is a first course in propositional modal logic, suitable for mathematicians, computer scientists and philosophers. Emphasis is placed on semantic aspects, in the form of labelled transition structures, rather than on proof theory. The book covers all the basic material - propositional languages, semantics and correspondence results, proof systems and completeness results - as well as some topics not usually covered in a modal logic course. It is written from a mathematical standpoint. To help the reader, the material is covered in short chapters, each concentrating on one topic. These are arranged into five parts, each with a common theme. An important feature of the book is the many exercises, and an extensive set of solutions is provided.
Many systems of quantified modal logic cannot be characterised by Kripke's well-known possible worlds semantic analysis. This book shows how they can be characterised by a more general 'admissible semantics', using models in which there is a restriction on which sets of worlds count as propositions. This requires a new interpretation of quantifiers that takes into account the admissibility of propositions. The author sheds new light on the celebrated Barcan Formula, whose role becomes that of legitimising the Kripkean interpretation of quantification. The theory is worked out for systems with quantifiers ranging over actual objects, and over all possibilia, and for logics with existence and identity predicates and definite descriptions. The final chapter develops a new admissible 'cover semantics' for propositional and quantified relevant logic, adapting ideas from the Kripke Joyal semantics for intuitionistic logic in topos theory. This book is for mathematical or philosophical logicians, computer scientists and linguists.
The nature of truth in mathematics is a problem which has exercised the minds of thinkers from at least the time of the ancient Greeks. The great advances in mathematics and philosophy in the twentieth century--and in particular the proof of Gödel's theorem and the development of the notion of independence in mathematics--have led to new viewpoints on his question. This book is the result of the interaction of a number of outstanding mathematicians and philosophers--including Yurii Manin, Vaughan Jones, and Per Martin-Löf--and their discussions of this problem. It provides an overview of the forefront of current thinking, and is a valuable introduction and reference for researchers in the area.
Although sequent calculi constitute an important category of proof systems, they are not as well known as axiomatic and natural deduction systems. Addressing this deficiency, Proof Theory: Sequent Calculi and Related Formalisms presents a comprehensive treatment of sequent calculi, including a wide range of variations. It focuses on sequent calculi for various non-classical logics, from intuitionistic logic to relevance logic, linear logic, and modal logic. In the first chapters, the author emphasizes classical logic and a variety of different sequent calculi for classical and intuitionistic logics. She then presents other non-classical logics and meta-logical results, including decidability results obtained specifically using sequent calculus formalizations of logics. The book is suitable for a wide audience and can be used in advanced undergraduate or graduate courses. Computer scientists will discover intriguing connections between sequent calculi and resolution as well as between sequent calculi and typed systems. Those interested in the constructive approach will find formalizations of intuitionistic logic and two calculi for linear logic. Mathematicians and philosophers will welcome the treatment of a range of variations on calculi for classical logic. Philosophical logicians will be interested in the calculi for relevance logics while linguists will appreciate the detailed presentation of Lambek calculi and their extensions.
Dependence is a common phenomenon, wherever one looks: ecological systems, astronomy, human history, stock markets - but what is the logic of dependence? This book is the first to carry out a systematic logical study of this important concept, giving on the way a precise mathematical treatment of Hintikka's independence friendly logic. Dependence logic adds the concept of dependence to first order logic. Here the syntax and semantics of dependence logic are studied, dependence logic is given an alternative game theoretic semantics, and sharp results about its complexity are proven. This is a textbook suitable for a special course in logic in mathematics, philosophy and computer science departments, and contains over 200 exercises, many of which have a full solution at the end of the book. It is also accessible to general readers, with a basic knowledge of logic, interested in new phenomena in logic.
Set theory is concerned with the foundation of mathematics. In the original formulations of set theory, there were paradoxes contained in the idea of the "set of all sets". Current standard theory (Zermelo-Fraenkel) avoids these paradoxes by restricting the way sets may be formed by other sets, specifically to disallow the possibility of forming the set of all sets. In the 1930s, Quine proposed a different form of set theory in which the set of all sets - the universal set - is allowed, but other restrictions are placed on these axioms. Since then, the steady interest expressed in these non-standard set theories has been boosted by their relevance to computer science. The second edition still concentrates largely on Quine's New Foundations, reflecting the author's belief that this provides the richest and most mysterious of the various systems dealing with set theories with a universal set. Also included is an expanded and completely revised account of the set theories of Church-Oswald and Mitchell, with descriptions of permutation models and extensions that preserve power sets. Dr Foster here presents the reader with a useful and readable introduction for those interested in this topic, and a reference work for those already involved in this area.
Berto's highly readable and lucid guide introduces students and the interested reader to Godel's celebrated "Incompleteness Theorem," and discusses some of the most famous - and infamous - claims arising from Godel's arguments.Offers a clear understanding of this difficult subject by presenting each of the key steps of the "Theorem" in separate chaptersDiscusses interpretations of the "Theorem" made by celebrated contemporary thinkersSheds light on the wider extra-mathematical and philosophical implications of Godel's theoriesWritten in an accessible, non-technical style
Logic Works is a critical and extensive introduction to logic. It asks questions about why systems of logic are as they are, how they relate to ordinary language and ordinary reasoning, and what alternatives there might be to classical logical doctrines. The book covers classical first-order logic and alternatives, including intuitionistic, free, and many-valued logic. It also considers how logical analysis can be applied to carefully represent the reasoning employed in academic and scientific work, better understand that reasoning, and identify its hidden premises. Aiming to be as much a reference work and handbook for further, independent study as a course text, it covers more material than is typically covered in an introductory course. It also covers this material at greater length and in more depth with the purpose of making it accessible to those with no prior training in logic or formal systems. Online support material includes a detailed student solutions manual with a running commentary on all starred exercises, and a set of editable slide presentations for course lectures. Key Features Introduces an unusually broad range of topics, allowing instructors to craft courses to meet a range of various objectives Adopts a critical attitude to certain classical doctrines, exposing students to alternative ways to answer philosophical questions about logic Carefully considers the ways natural language both resists and lends itself to formalization Makes objectual semantics for quantified logic easy, with an incremental, rule-governed approach assisted by numerous simple exercises Makes important metatheoretical results accessible to introductory students through a discursive presentation of those results and by using simple case studies
Arising from a special session held at the 2010 North American Annual Meeting of the Association for Symbolic Logic, this volume is an international cross-disciplinary collaboration with contributions from leading experts exploring connections across their respective fields. Themes range from philosophical examination of the foundations of physics and quantum logic, to exploitations of the methods and structures of operator theory, category theory, and knot theory in an effort to gain insight into the fundamental questions in quantum theory and logic. The book will appeal to researchers and students working in related fields, including logicians, mathematicians, computer scientists, and physicists. A brief introduction provides essential background on quantum mechanics and category theory, which, together with a thematic selection of articles, may also serve as the basic material for a graduate course or seminar.
Following developments in modern geometry, logic and physics, many scientists and philosophers in the modern era considered Kanta (TM)s theory of intuition to be obsolete. But this only represents one side of the story concerning Kant, intuition and twentieth century science. Several prominent mathematicians and physicists were convinced that the formal tools of modern logic, set theory and the axiomatic method are not sufficient for providing mathematics and physics with satisfactory foundations. All of Hilbert, GAdel, PoincarA(c), Weyl and Bohr thought that intuition was an indispensable element in describing the foundations of science. They had very different reasons for thinking this, and they had very different accounts of what they called intuition. But they had in common that their views of mathematics and physics were significantly influenced by their readings of Kant. In the present volume, various views of intuition and the axiomatic method are explored, beginning with Kanta (TM)s own approach. By way of these investigations, we hope to understand better the rationale behind Kanta (TM)s theory of intuition, as well as to grasp many facets of the relations between theories of intuition and the axiomatic method, dealing with both their strengths and limitations; in short, the volume covers logical and non-logical, historical and systematic issues in both mathematics and physics.
For computer scientists, especially those in the security field, the use of chaos has been limited to the computation of a small collection of famous but unsuitable maps that offer no explanation of why chaos is relevant in the considered contexts. Discrete Dynamical Systems and Chaotic Machines: Theory and Applications shows how to make finite machines, such as computers, neural networks, and wireless sensor networks, work chaotically as defined in a rigorous mathematical framework. Taking into account that these machines must interact in the real world, the authors share their research results on the behaviors of discrete dynamical systems and their use in computer science. Covering both theoretical and practical aspects, the book presents: Key mathematical and physical ideas in chaos theory Computer science fundamentals, clearly establishing that chaos properties can be satisfied by finite state machines Concrete applications of chaotic machines in computer security, including pseudorandom number generators, hash functions, digital watermarking, and steganography Concrete applications of chaotic machines in wireless sensor networks, including secure data aggregation and video surveillance Until the authors' recent research, the practical implementation of the mathematical theory of chaos on finite machines raised several issues. This self-contained book illustrates how chaos theory enables the study of computer security problems, such as steganalysis, that otherwise could not be tackled. It also explains how the theory reinforces existing cryptographically secure tools and schemes. |
![]() ![]() You may like...
Lattice-Based Public-Key Cryptography in…
Sujoy Sinha Roy, Ingrid Verbauwhede
Hardcover
R1,644
Discovery Miles 16 440
Indentured - Behind The Scenes At Gupta…
Rajesh Sundaram
Paperback
![]()
Forging New Frontiers: Fuzzy Pioneers I
Masoud Nikravesh, Lofti A. Zadeh
Hardcover
R5,660
Discovery Miles 56 600
|