![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Mathematical foundations > Mathematical logic
This junior/senior level text is devoted to a study of first-order logic and its role in the foundations of mathematics: What is a proof? How can a proof be justified? To what extent can a proof be made a purely mechanical procedure? How much faith can we have in a proof that is so complex that no one can follow it through in a lifetime? The first substantial answers to these questions have only been obtained in this century. The most striking results are contained in Goedel's work: First, it is possible to give a simple set of rules that suffice to carry out all mathematical proofs; but, second, these rules are necessarily incomplete - it is impossible, for example, to prove all true statements of arithmetic. The book begins with an introduction to first-order logic, Goedel's theorem, and model theory. A second part covers extensions of first-order logic and limitations of the formal methods. The book covers several advanced topics, not commonly treated in introductory texts, such as Trachtenbrot's undecidability theorem. Fraissé's elementary equivalence, and Lindstroem's theorem on the maximality of first-order logic.
Godel's Incompleteness Theorems are among the most significant results in the foundation of mathematics. These results have a positive consequence: any system of axioms for mathematics that we recognize as correct can be properly extended by adding as a new axiom a formal statement expressing that the original system is consistent. This suggests that our mathematical knowledge is inexhaustible, an essentially philosophical topic to which this book is devoted. Basic material in predicate logic, set theory and recursion theory is presented, leading to a proof of incompleteness theorems. The inexhaustibility of mathematical knowledge is treated based on the concept of transfinite progressions of theories as conceived by Turing and Feferman. All concepts and results necessary to understand the arguments are introduced as needed, making the presentation self-contained and thorough."
This book proves some important new theorems in the theory of canonical inner models for large cardinal hypotheses, a topic of central importance in modern set theory. In particular, the author 'completes' the theory of Fine Structure and Iteration Trees (FSIT) by proving a comparison theorem for mouse pairs parallel to the FSIT comparison theorem for pure extender mice, and then using the underlying comparison process to develop a fine structure theory for strategy mice. Great effort has been taken to make the book accessible to non-experts so that it may also serve as an introduction to the higher reaches of inner model theory. It contains a good deal of background material, some of it unpublished folklore, and includes many references to the literature to guide further reading. An introductory essay serves to place the new results in their broader context. This is a landmark work in inner model theory that should be in every set theorist's library.
A compilation of papers presented at the 1999 European Summer Meeting of the Association for Symbolic Logic, Logic Colloquium '99 includes surveys and research articles from some of the world's preeminent logicians. Two long articles are based on tutorials given at the meeting and present accessible expositions of current research in two active areas of logic, geometric model theory and descriptive set theory of group actions. The remaining articles cover current research topics in all areas of mathematical logic, including logic in computer science, proof theory, set theory, model theory, computability theory, and philosophy.
Cryptology: Classical and Modern, Second Edition proficiently introduces readers to the fascinating field of cryptology. The book covers classical methods including substitution, transposition, Alberti, Vigenere, and Hill ciphers. It also includes coverage of the Enigma machine, Turing bombe, and Navajo code. Additionally, the book presents modern methods like RSA, ElGamal, and stream ciphers, as well as the Diffie-Hellman key exchange and Advanced Encryption Standard. When possible, the book details methods for breaking both classical and modern methods. The new edition expands upon the material from the first edition which was oriented for students in non-technical fields. At the same time, the second edition supplements this material with new content that serves students in more technical fields as well. Thus, the second edition can be fully utilized by both technical and non-technical students at all levels of study. The authors include a wealth of material for a one-semester cryptology course, and research exercises that can be used for supplemental projects. Hints and answers to selected exercises are found at the end of the book. Features: Requires no prior programming knowledge or background in college-level mathematics Illustrates the importance of cryptology in cultural and historical contexts, including the Enigma machine, Turing bombe, and Navajo code Gives straightforward explanations of the Advanced Encryption Standard, public-key ciphers, and message authentication Describes the implementation and cryptanalysis of classical ciphers, such as substitution, transposition, shift, affine, Alberti, Vigenere, and Hill
This book presents the latest research, conducted by leading philosophers and scientists from various fields, on the topic of top-down causation. The chapters combine to form a unique, interdisciplinary perspective, drawing upon George Ellis's extensive research and novel perspectives on topics including downwards causation, weak and strong emergence, mental causation, biological relativity, effective field theory and levels in nature. The collection also serves as a Festschrift in honour of George Ellis' 80th birthday. The extensive and interdisciplinary scope of this book makes it vital reading for anyone interested in the work of George Ellis and current research on the topics of causation and emergence.
Floating-point arithmetic is ubiquitous in modern computing, as it is the tool of choice to approximate real numbers. Due to its limited range and precision, its use can become quite involved and potentially lead to numerous failures. One way to greatly increase confidence in floating-point software is by computer-assisted verification of its correctness proofs. This book provides a comprehensive view of how to formally specify and verify tricky floating-point algorithms with the Coq proof assistant. It describes the Flocq formalization of floating-point arithmetic and some methods to automate theorem proofs. It then presents the specification and verification of various algorithms, from error-free transformations to a numerical scheme for a partial differential equation. The examples cover not only mathematical algorithms but also C programs as well as issues related to compilation.
Computing in Nonlinear Media and Automata Collectives presents an account of new ways to design massively parallel computing devices in advanced mathematical models, such as cellular automata and lattice swarms, from unconventional materials, including chemical solutions, bio-polymers, and excitable media.
Mathematician and popular science author Eugenia Cheng is on a mission to show you that mathematics can be flexible, creative, and visual. This joyful journey through the world of abstract mathematics into category theory will demystify mathematical thought processes and help you develop your own thinking, with no formal mathematical background needed. The book brings abstract mathematical ideas down to earth using examples of social justice, current events, and everyday life - from privilege to COVID-19 to driving routes. The journey begins with the ideas and workings of abstract mathematics, after which you will gently climb toward more technical material, learning everything needed to understand category theory, and then key concepts in category theory like natural transformations, duality, and even a glimpse of ongoing research in higher-dimensional category theory. For fans of How to Bake Pi, this will help you dig deeper into mathematical concepts and build your mathematical background.
This story of a highly intelligent observer of the turbulent 20th century who was intimately involved as the secretary and bodyguard to Leon Trotsky is based on extensive interviews with the subject, Jean van Heijenoort, and his family, friends, and colleagues. The author has captured the personal drama and the professional life of her protagonist--ranging from the political passion of a young intellectual to the scientific and historic work in the most abstract and yet philosophically important area of logic--in a very readable narrative.
This volume presents the state of the art in the algebraic investigation into substructural logics. It features papers from the workshop AsubL (Algebra & Substructural Logics - Take 6). Held at the University of Cagliari, Italy, this event is part of the framework of the Horizon 2020 Project SYSMICS: SYntax meets Semantics: Methods, Interactions, and Connections in Substructural logics. Substructural logics are usually formulated as Gentzen systems that lack one or more structural rules. They have been intensively studied over the past two decades by logicians of various persuasions. These researchers include mathematicians, philosophers, linguists, and computer scientists. Substructural logics are applicable to the mathematical investigation of such processes as resource-conscious reasoning, approximate reasoning, type-theoretical grammar, and other focal notions in computer science. They also apply to epistemology, economics, and linguistics. The recourse to algebraic methods -- or, better, the fecund interplay of algebra and proof theory -- has proved useful in providing a unifying framework for these investigations. The AsubL series of conferences, in particular, has played an important role in these developments. This collection will appeal to students and researchers with an interest in substructural logics, abstract algebraic logic, residuated lattices, proof theory, universal algebra, and logical semantics.
Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. In this volume, the third publication in the Lecture Notes in Logic series, Mitchell and Steel construct an inner model with a Woodin cardinal and develop its fine structure theory. This work builds upon the existing theory of a model of the form L[E], where E is a coherent sequence of extenders, and relies upon the fine structure theory of L[E] models with strong cardinals, and the theory of iteration trees and 'backgrounded' L[E] models with Woodin cardinals. This work is what results when fine structure meets iteration trees.
Assuming no previous study in logic, this informal yet rigorous text covers the material of a standard undergraduate first course in mathematical logic, using natural deduction and leading up to the completeness theorem for first-order logic. At each stage of the text, the reader is given an intuition based on standard mathematical practice, which is subsequently developed with clean formal mathematics. Alongside the practical examples, readers learn what can and can't be calculated; for example the correctness of a derivation proving a given sequent can be tested mechanically, but there is no general mechanical test for the existence of a derivation proving the given sequent. The undecidability results are proved rigorously in an optional final chapter, assuming Matiyasevich's theorem characterising the computably enumerable relations. Rigorous proofs of the adequacy and completeness proofs of the relevant logics are provided, with careful attention to the languages involved. Optional sections discuss the classification of mathematical structures by first-order theories; the required theory of cardinality is developed from scratch. Throughout the book there are notes on historical aspects of the material, and connections with linguistics and computer science, and the discussion of syntax and semantics is influenced by modern linguistic approaches. Two basic themes in recent cognitive science studies of actual human reasoning are also introduced. Including extensive exercises and selected solutions, this text is ideal for students in Logic, Mathematics, Philosophy, and Computer Science.
A comprehensive and user-friendly guide to the use of logic in mathematical reasoning Mathematical Logic presents a comprehensive introduction to formal methods of logic and their use as a reliable tool for deductive reasoning. With its user-friendly approach, this book successfully equips readers with the key concepts and methods for formulating valid mathematical arguments that can be used to uncover truths across diverse areas of study such as mathematics, computer science, and philosophy. The book develops the logical tools for writing proofs by guiding readers through both the established "Hilbert" style of proof writing, as well as the "equational" style that is emerging in computer science and engineering applications. Chapters have been organized into the two topical areas of Boolean logic and predicate logic. Techniques situated outside formal logic are applied to illustrate and demonstrate significant facts regarding the power and limitations of logic, such as: Logic can certify truths and only truths. Logic can certify all absolute truths (completeness theorems of Post and Godel). Logic cannot certify all "conditional" truths, such as those that are specific to the Peano arithmetic. Therefore, logic has some serious limitations, as shown through Godel's incompleteness theorem. Numerous examples and problem sets are provided throughout the text, further facilitating readers' understanding of the capabilities of logic to discover mathematical truths. In addition, an extensive appendix introduces Tarski semantics and proceeds with detailed proofs of completeness and first incompleteness theorems, while also providing a self-contained introduction to thetheory of computability. With its thorough scope of coverage and accessible style, Mathematical Logic is an ideal book for courses in mathematics, computer science, and philosophy at the upper-undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners who wish to learn how to use logic in their everyday work.
The International research Library of Philosophy collects in book form a wide range of important and influential essays in philosophy, drawn predominantly from English-language journals. Each volume in the library deals with a field of enquiry which has received significant attention in philosophy in the last 25 years and is edited by a philosopher noted in that field.
This introduction to first-order logic clearly works out the role of first-order logic in the foundations of mathematics, particularly the two basic questions of the range of the axiomatic method and of theorem-proving by machines. It covers several advanced topics not commonly treated in introductory texts, such as Fraisse's characterization of elementary equivalence, Lindstroem's theorem on the maximality of first-order logic, and the fundamentals of logic programming.
All current methods of secure communication such as public-key cryptography can eventually be broken by faster computing. At the interface of physics and computer science lies a powerful solution for secure communications: quantum cryptography. Because eavesdropping changes the physical nature of the information, users in a quantum exchange can easily detect eavesdroppers. This allows for totally secure random key distribution, a central requirement for use of the one-time pad. Since the one-time pad is theoretically proven to be undecipherable, quantum cryptography is the key to perfect secrecy. Quantum Communications and Cryptography is the first comprehensive review of the past, present, and potential developments in this dynamic field. Leading expert contributors from around the world discuss the scientific foundations, experimental and theoretical developments, and cutting-edge technical and engineering advances in quantum communications and cryptography. The book describes the engineering principles and practical implementations in a real-world metropolitan network as well as physical principles and experimental results of such technologies as entanglement swapping and quantum teleportation. It also offers the first detailed treatment of quantum information processing with continuous variables. Technologies include both free-space and fiber-based communications systems along with the necessary protocols and information processing approaches. Bridging the gap between physics and engineering, Quantum Communications and Cryptography supplies a springboard for further developments and breakthroughs in this rapidly growing area.
A compact and easily accessible book, it guides the reader in unravelling the apparent mysteries found in doing mathematical proofs. Simply written, it introduces the art and science of proving mathematical theorems and propositions and equips students with the skill required to tackle the task of proving mathematical assertions. Theoremus - A Student's Guide to Mathematical Proofs is divided into two parts. Part 1 provides a grounding in the notion of mathematical assertions, arguments and fallacies and Part 2, presents lessons learned in action by applying them into the study of logic itself. The book supplies plenty of examples and figures, gives some historical background on personalities that gave rise to the topic and provides reflective problems to try and solve. The author aims to provide the reader with the confidence to take a deep dive into some more advanced work in mathematics or logic.
Type theory is one of the most important tools in the design of higher-level programming languages, such as ML. This book introduces and teaches its techniques by focusing on one particularly neat system and studying it in detail. By concentrating on the principles that make the theory work in practice, the author covers all the key ideas without getting involved in the complications of more advanced systems. This book takes a type-assignment approach to type theory, and the system considered is the simplest polymorphic one. The author covers all the basic ideas, including the system's relation to propositional logic, and gives a careful treatment of the type-checking algorithm that lies at the heart of every such system. Also featured are two other interesting algorithms that until now have been buried in inaccessible technical literature. The mathematical presentation is rigorous but clear, making it the first book at this level that can be used as an introduction to type theory for computer scientists.
This textbook offers a detailed introduction to the methodology and applications of sequent calculi in propositional logic. Unlike other texts concerned with proof theory, emphasis is placed on illustrating how to use sequent calculi to prove a wide range of metatheoretical results. The presentation is elementary and self-contained, with all technical details both formally stated and also informally explained. Numerous proofs are worked through to demonstrate methods of proving important results, such as the cut-elimination theorem, completeness, decidability, and interpolation. Other proofs are presented with portions left as exercises for readers, allowing them to practice techniques of sequent calculus. After a brief introduction to classical propositional logic, the text explores three variants of sequent calculus and their features and applications. The remaining chapters then show how sequent calculi can be extended, modified, and applied to non-classical logics, including modal, intuitionistic, substructural, and many-valued logics. Sequents and Trees is suitable for graduate and advanced undergraduate students in logic taking courses on proof theory and its application to non-classical logics. It will also be of interest to researchers in computer science and philosophers.
The book is a concise, self-contained and fully updated introduction to automata theory - a fundamental topic of computer sciences and engineering. The material is presented in a rigorous yet convincing way and is supplied with a wealth of examples, exercises and down-to-the earth convincing explanatory notes. An ideal text to a spectrum of one-term courses in computer sciences, both at the senior undergraduate and graduate students.
This book is about "diamond," a logic of paradox. In diamond, a statement can be true yet false; an "imaginary" state, midway between being and non-being. Diamond's imaginary values solve many logical paradoxes unsolvable in two-valued boolean logic. In this volume, paradoxes by Russell, Cantor, Berry and Zeno are all resolved. This book has three sections: Paradox Logic, which covers the classic paradoxes of mathematical logic, shows how they can be resolved in this new system; The Second Paradox, which relates diamond to Boolean logic and the Spencer-Brown "modulator"; and Metamathematical Dilemma, which relates diamond to Gdelian meta-mathematics and dilemma games.
This edited book focuses on non-classical logics and their applications, highlighting the rapid advances and the new perspectives that are emerging in this area. Non-classical logics are logical formalisms that violate or go beyond classical logic laws, and their specific features make them particularly suited to describing and reason about aspects of social interaction. The richness and diversity of non-classical logics mean that this area is a natural catalyst for ideas and insights from many different fields, from information theory to game theory and business science. This volume is the post-proceedings of the 8th International Conference on Logic and Cognition, held at Sun Yat-Sen University Institute of Logic and Cognition (ILC) in Guangzhou, China in December 2016. The conference series started in 2001, and is organized by the ILC, often in collaboration with various international research groups. This eighth installment was jointly organized by ILC and Alessandra Palmigiano's Applied Logic research group. The conference series aims to foster the development of effective logical tools to study social behavior from a philosophical, cognitive and formal perspective in order to challenge the field of logic in ways that open up new and exciting research directions. Chapter "The Category of Node-and-Choice Forms, with Subcategories for Choice-Sequence Forms and Choice-Set Forms" of this book is available open access under a CC BY 4.0 license at link.springer.com
The aim of this book is to present mathematical logic to students who are interested in what this field is but have no intention of specializing in it. The point of view is to treat logic on an equal footing to any other topic in the mathematical curriculum. The book starts with a presentation of naive set theory, the theory of sets that mathematicians use on a daily basis. Each subsequent chapter presents one of the main areas of mathematical logic: first order logic and formal proofs, model theory, recursion theory, Godel's incompleteness theorem, and, finally, the axiomatic set theory. Each chapter includes several interesting highlights-outside of logic when possible-either in the main text, or as exercises or appendices. Exercises are an essential component of the book, and a good number of them are designed to provide an opening to additional topics of interest.
Innovative Teaching: Best Practices from Business and Beyond for Mathematics Teachers provides educators with new and exciting ways to introduce material and methods to motivate and engage students by showing how some of the techniques commonly used in the business world - and beyond - are applicable to the world of education. It also offers educators practical advice with regard to the changing culture of education, keeping up with technology, navigating politics at work, interacting with colleagues, developing leadership skills, group behavior, and gender differences.Innovative Teaching demonstrates how the classroom environment is similar to the marketplace. Educators, like businesses, for example, must capture and hold the attention of their audience while competing with a constant stream of 'noise.' With the introduction of the Internet and the wide use of social media, promoters understand that they must not only engage their audience, but also incorporate audience feedback into the promotional work and product or service they offer. Innovative Teaching shows educators how to take the best practices from business - and beyond - and recombine these resources for appropriate use in the classroom. |
![]() ![]() You may like...
Granular Computing: At the Junction of…
Rafael Bello, Rafael Falcon, …
Hardcover
R4,550
Discovery Miles 45 500
The Application of Neural Networks in…
Vladimir M Krasnopolsky
Hardcover
Essentials of Marketing Research, Global…
Manoj Malhotra, David Birks, …
Paperback
R2,471
Discovery Miles 24 710
Crowdsourcing of Sensor Cloud Services
Azadeh Ghari Neiat, Athman Bouguettaya
Hardcover
Value Networks in Manufacturing…
Jayantha P Liyanage, Teuvo Uusitalo
Hardcover
R5,032
Discovery Miles 50 320
Air Route Networks Through Complex…
Jose M Sallan, Oriol Lordan
Paperback
R2,674
Discovery Miles 26 740
|