![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Mathematical foundations > Mathematical logic
In this volume, logic starts from the observation that in everyday arguments, as brought forward say by a lawyer, statements are transformed linguistically, connecting them in formal ways irrespective of their contents. Understanding such arguments as deductive situations, or "sequents" in the technical terminology, the transformations between them can be expressed as logical rules. This leads to Gentzen's calculi of derivations, presented first for positive logic and then, depending on the requirements made on the behaviour of negation, for minimal, intuitionist and classical logic. Identifying interdeducible formulas, each of these calculi gives rise to a lattice-like ordered structure. Describing the generation of filters in these structures leads to corresponding modus ponens calculi, and these turn out to be semantically complete because they express the algorithms generating semantical consequences, as obtained in Volume One of these lectures. The operators transforming derivations from one type of calculus into the other are also studied with respect to changes of the lengths of derivations, and operators eliminating defined predicate and function symbols are described expli
For propositional logic it can be decided whether a formula has a deduction from a finite set of other formulas. The present volume begins with a method to decide this for the quantified formulas of those fragments of arithmetic which express the properties of order-plus-successor and or order-plus-addition (Presburger arithmetic); it makes use of an algorithm eliminating quantifiers which, in turn, is also applied to obtain consistency proofs for these fragments. Stronger fragments of arithmetic, also containing multiplication, are sufficiently rich to express a primitive recursive encoding of terms, formulas and deductions, and this leads to Godel's theorem exhibiting statements already undecidable in these fragments. Its central idea, isolated in Tarski's fixpoint lemma, has a certain analogy with Eubulides' antinomy of the Liar, and in a non-technical chapter, accessible to a wider class of readers, this analogy is exploited for an informal discussion of undefinability and incompleteness. The technical tools required to verify the hypotheses on arithmetical representability, on the other hand, are collected in an independent presentation of recursive functions and relations.
Through three editions, Cryptography: Theory and Practice, has been embraced by instructors and students alike. It offers a comprehensive primer for the subject's fundamentals while presenting the most current advances in cryptography. The authors offer comprehensive, in-depth treatment of the methods and protocols that are vital to safeguarding the seemingly infinite and increasing amount of information circulating around the world. Key Features of the Fourth Edition: New chapter on the exciting, emerging new area of post-quantum cryptography (Chapter 9). New high-level, nontechnical overview of the goals and tools of cryptography (Chapter 1). New mathematical appendix that summarizes definitions and main results on number theory and algebra (Appendix A). An expanded treatment of stream ciphers, including common design techniques along with coverage of Trivium. Interesting attacks on cryptosystems, including: padding oracle attack correlation attacks and algebraic attacks on stream ciphers attack on the DUAL-EC random bit generator that makes use of a trapdoor. A treatment of the sponge construction for hash functions and its use in the new SHA-3 hash standard. Methods of key distribution in sensor networks. The basics of visual cryptography, allowing a secure method to split a secret visual message into pieces (shares) that can later be combined to reconstruct the secret. The fundamental techniques cryptocurrencies, as used in Bitcoin and blockchain. The basics of the new methods employed in messaging protocols such as Signal, including deniability and Diffie-Hellman key ratcheting.
Proof complexity is a rich subject drawing on methods from logic, combinatorics, algebra and computer science. This self-contained book presents the basic concepts, classical results, current state of the art and possible future directions in the field. It stresses a view of proof complexity as a whole entity rather than a collection of various topics held together loosely by a few notions, and it favors more generalizable statements. Lower bounds for lengths of proofs, often regarded as the key issue in proof complexity, are of course covered in detail. However, upper bounds are not neglected: this book also explores the relations between bounded arithmetic theories and proof systems and how they can be used to prove upper bounds on lengths of proofs and simulations among proof systems. It goes on to discuss topics that transcend specific proof systems, allowing for deeper understanding of the fundamental problems of the subject.
Volume II of "Classical Recursion Theory" describes the universe
from a local (bottom-up
Concurrent systems are generally understood in terms of behavioral
notions. Models for Concurrency analyzes the subject in terms of
events and their temporal relationship rather than on global
states. It presents a comprehensive analysis of model theory
applied to concurrent protocols, and seeks to provide a theory of
concurrency that is both intuitively appealing and rigorously based
on mathematical foundations.
This is a classic introduction to set theory in three parts. The first part gives a general introduction to set theory, suitable for undergraduates; complete proofs are given and no background in logic is required. Exercises are included, and the more difficult ones are supplied with hints. An appendix to the first part gives a more formal foundation to axiomatic set theory, supplementing the intuitive introduction given in the first part. The final part gives an introduction to modern tools of combinatorial set theory. This part contains enough material for a graduate course of one or two semesters. The subjects discussed include stationary sets, delta systems, partition relations, set mappings, measurable and real-valued measurable cardinals. Two sections give an introduction to modern results on exponentiation of singular cardinals, and certain deeper aspects of the topics are developed in advanced problems.
Proofs play a central role in advanced mathematics and theoretical computer science, yet many students struggle the first time they take a course in which proofs play a significant role. This bestselling text's third edition helps students transition from solving problems to proving theorems by teaching them the techniques needed to read and write proofs. Featuring over 150 new exercises and a new chapter on number theory, this new edition introduces students to the world of advanced mathematics through the mastery of proofs. The book begins with the basic concepts of logic and set theory to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for an analysis of techniques that can be used to build up complex proofs step by step, using detailed 'scratch work' sections to expose the machinery of proofs about numbers, sets, relations, and functions. Assuming no background beyond standard high school mathematics, this book will be useful to anyone interested in logic and proofs: computer scientists, philosophers, linguists, and, of course, mathematicians.
Classical and Fuzzy Concepts in Mathematical Logic and Applications provides a broad, thorough coverage of the fundamentals of two-valued logic, multivalued logic, and fuzzy logic. Exploring the parallels between classical and fuzzy mathematical logic, the book examines the use of logic in computer science, addresses questions in automatic deduction, and describes efficient computer implementation of proof techniques. Specific issues discussed include: oPropositional and predicate logic oLogic networks oLogic programming oProof of correctness oSemantics oSyntax oCompletenesss oNon-contradiction oTheorems of Herbrand and Kalman The authors consider that the teaching of logic for computer science is biased by the absence of motivations, comments, relevant and convincing examples, graphic aids, and the use of color to distinguish language and metalanguage. Classical and Fuzzy Concepts in Mathematical Logic and Applications discusses how the presence of these facts trigger a stirring, decisive insight into the understanding process. This view shapes this work, reflecting the authors' subjective balance between the scientific and pedagogic components of the textbook. Usually, problems in logic lack relevance, creating a gap between classroom learning and applications to real-life problems. The book includes a variety of application-oriented problems at the end of almost every section, including programming problems in PROLOG III. With the possibility of carrying out proofs with PROLOG III and other software packages, readers will gain a first-hand experience and thus a deeper understanding of the idea of formal proof.
"Attempts to unite the fields of mathematical logic and general algebra. Presents a collection of refereed papers inspired by the International Conference on Logic and Algebra held in Siena, Italy, in honor of the late Italian mathematician Roberto Magari, a leading force in the blossoming of research in mathematical logic in Italy since the 1960s."
This revised and considerably expanded 2nd edition brings together a wide range of topics, including modal, tense, conditional, intuitionist, many-valued, paraconsistent, relevant, and fuzzy logics. Part 1, on propositional logic, is the old Introduction, but contains much new material. Part 2 is entirely new, and covers quantification and identity for all the logics in Part 1. The material is unified by the underlying theme of world semantics. All of the topics are explained clearly using devices such as tableau proofs, and their relation to current philosophical issues and debates are discussed. Students with a basic understanding of classical logic will find this book an invaluable introduction to an area that has become of central importance in both logic and philosophy. It will also interest people working in mathematics and computer science who wish to know about the area.
Intended for specialists in functional analysis and stability theory, this work presents a systematic exposition of estimations for norms of operator-valued functions, and applies the estimates to spectrum perturbations of linear operators and stability theory. The author demonstrates his own approach to spectrum perturbations.
This volume presents the lecture notes of short courses given by three leading experts in mathematical logic at the 2012 Asian Initiative for Infinity Logic Summer School. The major topics cover set-theoretic forcing, higher recursion theory, and applications of set theory to C*-algebra. This volume offers a wide spectrum of ideas and techniques introduced in contemporary research in the field of mathematical logic to students, researchers and mathematicians.
Transition to Real Analysis with Proof provides undergraduate students with an introduction to analysis including an introduction to proof. The text combines the topics covered in a transition course to lead into a first course on analysis. This combined approach allows instructors to teach a single course where two were offered. The text opens with an introduction to basic logic and set theory, setting students up to succeed in the study of analysis. Each section is followed by graduated exercises that both guide and challenge students. The author includes examples and illustrations that appeal to the visual side of analysis. The accessible structure of the book makes it an ideal refence for later years of study or professional work. Combines the author's previous works Elements of Advanced Mathematics with Foundations of Analysis Combines logic, set theory and other elements with a one-semester introduction to analysis. Author is a well-known mathematics educator and researcher Targets a trend to combine two courses into one
The Asian Logic Conference is the most significant logic meeting outside of North America and Europe, and this volume represents work presented at, and arising from the 12th meeting. It collects a number of interesting papers from experts in the field. It covers many areas of logic.
This text presents methods of modern set theory as tools that can be usefully applied to other areas of mathematics. The author describes numerous applications in abstract geometry and real analysis and, in some cases, in topology and algebra. The book begins with a tour of the basics of set theory, culminating in a proof of Zorn's Lemma and a discussion of some of its applications. The author then develops the notions of transfinite induction and descriptive set theory, with applications to the theory of real functions. The final part of the book presents the tools of "modern" set theory: Martin's Axiom, the Diamond Principle, and elements of forcing. Written primarily as a text for beginning graduate or advanced level undergraduate students, this book should also interest researchers wanting to learn more about set theoretical techniques applicable to their fields.
Multiple-Valued Logic Design: An Introduction explains the theory
and applications of this increasingly important subject. Written in
a clear and understandable style, the author develops the material
in a skillful way. Without using a huge mathematical apparatus, he
introduces the subject in a general form that includes the
well-known binary logic as a special case. The book is further
enhanced by more 200 explanatory diagrams and circuits, hardware
and software applications with supporting PASCAL programming, and
comprehensive exercises with even-numbered answers for every
chapter.
Going beyond current books on privacy and security, Unauthorized Access: The Crisis in Online Privacy and Security proposes specific solutions to public policy issues pertaining to online privacy and security. Requiring no technical or legal expertise, the book explains complicated concepts in clear, straightforward language. The authors two renowned experts on computer security and law explore the well-established connection between social norms, privacy, security, and technological structure. This approach is the key to understanding information security and informational privacy, providing a practical framework to address ethical and legal issues. The authors also discuss how rapid technological developments have created novel situations that lack relevant norms and present ways to develop these norms for protecting informational privacy and ensuring sufficient information security. Bridging the gap among computer scientists, economists, lawyers, and public policy makers, this book provides technically and legally sound public policy guidance about online privacy and security. It emphasizes the need to make trade-offs among the complex concerns that arise in the context of online privacy and security.
Assuming little previous mathematical knowledge, Error Correcting Codes provides a sound introduction to key areas of the subject. Topics have been chosen for their importance and practical significance, which Baylis demonstrates in a rigorous but gentle mathematical style. Coverage includes optimal codes; linear and non-linear codes; general techniques of decoding errors and erasures; error detection; syndrome decoding, and much more. Error Correcting Codes contains not only straight maths, but also exercises on more investigational problem solving. Chapters on number theory and polynomial algebra are included to support linear codes and cyclic codes, and an extensive reminder of relevant topics in linear algebra is given. Exercises are placed within the main body of the text to encourage active participation by the reader, with comprehensive solutions provided. Error Correcting Codes will appeal to undergraduate students in pure and applied mathematical fields, software engineering, communications engineering, computer science and information technology, and to organizations with substantial research and development in those areas.
It is necessary to practice methodological doubt, like Descartes, in - der to loosen the hold of mental habits; and it is necessary to cultivate logical imagination, in order to have a number of hypotheses at c- mand, and not to be the slave of the one which common sense has r- dered easy to imagine. These two processes, of doubting the familiar and imagining the unfamiliar, are corrective, and form the chief part of the mental training required for a philosopher. Bertrand Russell At every stage and in all circumstances knowledge is incomplete and provisional, conditioned and limited by the historical circumstances under which it was acquired, including the means and methods used for gaining it and the historically conditioned assumptions and categories used in the formulation of ideas and conclusions. Maurice Cornforth This monograph is the second in the series of meta-theoretic analysis of fuzzy paradigm and its contribution and possible contribution to formal reasoning in order to free the knowledge production process from the ridge frame of the classical paradigm that makes its application to soft and inexact sciences d- ficult or irrelevant. The work in the previous monograph was strictly devoted to problems of theory of knowledge and critique of classical, bounded and other rationalities in decision-choice processes regarding the principles of verification, falsification or corroboration in knowledge production. This monograph deals mostly with epistemic decision-choice models and theories and how they are related to both the classical and fuzzy paradigms.
A textbook for either a semester or year course for graduate students of mathematics who have had at least one course in topology. Introduces continuum theory through a combination of classical and modern techniques. Annotation copyright Book News, Inc. Portland, Or.
For many civilian, security, and military applications, distributed and networked coordination offers a more promising alternative to centralized command and control in terms of scalability, flexibility, and robustness. It also introduces its own challenges. Distributed Networks: Intelligence, Security, and Applications brings together scientific research in distributed network intelligence, security, and novel applications. The book presents recent trends and advances in the theory and applications of network intelligence and helps you understand how to successfully incorporate them into distributed systems and services. Featuring contributions by leading scholars and experts from around the world, this collection covers: Approaches for distributed network intelligence Distributed models for distributed enterprises, including forecasting and performance measurement models Security applications for distributed enterprises, including intrusion tackling and peer-to-peer traffic detection Future wireless networking scenarios, including the use of software sensors instead of hardware sensors Emerging enterprise applications and trends such as the smartOR standard and innovative concepts for human-machine interaction in the operating room Several chapters use a tutorial style to emphasize the development process behind complex distributed networked systems and services, which highlights the difficulties of knowledge engineering of such systems. Delving into novel concepts, theories, and advanced technologies, this book offers inspiration for further research and development in distributed computing and networking, especially related to security solutions for distributed environments.
Computer arithmetic has become so fundamentally embedded into digital design that many engineers are unaware of the many research advances in the area. As a result, they are losing out on emerging opportunities to optimize its use in targeted applications and technologies. In many cases, easily available standard arithmetic hardware might not necessarily be the most efficient implementation strategy. Multiple-Base Number System: Theory and Applications stands apart from the usual books on computer arithmetic with its concentration on the uses and the mathematical operations associated with the recently introduced multiple-base number system (MBNS). The book identifies and explores several diverse and never-before-considered MBNS applications (and their implementation issues) to enhance computation efficiency, specifically in digital signal processing (DSP) and public key cryptography. Despite the recent development and increasing popularity of MBNS as a specialized tool for high-performance calculations in electronic hardware and other fields, no single text has compiled all the crucial, cutting-edge information engineers need to optimize its use. The authors' main goal was to disseminate the results of extensive design research-including much of their own-to help the widest possible audience of engineers, computer scientists, and mathematicians. Dedicated to helping readers apply discoveries in advanced integrated circuit technologies, this single reference is packed with a wealth of vital content previously scattered throughout limited-circulation technical and mathematical journals and papers-resources generally accessible only to researchers and designers working in highly specialized fields. Leveling the informational playing field, this resource guides readers through an in-depth analysis of theory, architectural techniques, and the latest research on the subject, subsequently laying the groundwork users require to begin applying MBNS.
This book treats bounded arithmetic and propositional proof complexity from the point of view of computational complexity. The first seven chapters include the necessary logical background for the material and are suitable for a graduate course. Associated with each of many complexity classes are both a two-sorted predicate calculus theory, with induction restricted to concepts in the class, and a propositional proof system. The complexity classes range from AC0 for the weakest theory up to the polynomial hierarchy. Each bounded theorem in a theory translates into a family of (quantified) propositional tautologies with polynomial size proofs in the corresponding proof system. The theory proves the soundness of the associated proof system. The result is a uniform treatment of many systems in the literature, including Buss's theories for the polynomial hierarchy and many disparate systems for complexity classes such as AC0, AC0(m), TC0, NC1, L, NL, NC, and P. |
![]() ![]() You may like...
Complex Conjugate Matrix Equations for…
Aiguo Wu, Ying Zhang
Hardcover
R3,852
Discovery Miles 38 520
Deep Learning - A Comprehensive Guide
Siniraj Pulari, Subashri Vasudevan, …
Hardcover
R3,877
Discovery Miles 38 770
Stabilization and H Control of Switched…
Jun Fu, Ruicheng Ma
Hardcover
R2,873
Discovery Miles 28 730
Design of Feedback Control Systems
Raymond T. Stefani, Bahram Shahian, …
Hardcover
R6,952
Discovery Miles 69 520
Proceedings of 2017 Chinese Intelligent…
Yingmin Jia, Junping Du, …
Hardcover
R5,753
Discovery Miles 57 530
Sliding Mode Control - The Delta-Sigma…
Hebertt Sira-Ramirez
Hardcover
Introduction to Diagnosis of Active…
Gianfranco Lamperti, Marina Zanella, …
Hardcover
R3,597
Discovery Miles 35 970
|