![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Mathematical foundations > Mathematical logic
The approach to probability theory followed in this book (which
differs radically from the usual one, based on a measure-theoretic
framework) characterizes probability as a linear operator rather
than as a measure, and is based on the concept of coherence, which
can be framed in the most general view of conditional probability.
It is a flexible' and unifying tool suited for handling, e.g.,
partial probability assessments (not requiring that the set of all
possible outcomes' be endowed with a previously given algebraic
structure, such as a Boolean algebra), and conditional
independence, in a way that avoids all the inconsistencies related
to logical dependence (so that a theory referring to graphical
models more general than those usually considered in bayesian
networks can be derived). Moreover, it is possible to encompass
other approaches to uncertain reasoning, such as fuzziness,
possibility functions, and default reasoning.
The papers on rough set theory and its applications placed in this volume present a wide spectrum of problems representative to the present. stage of this theory. Researchers from many countries reveal their rec.ent results on various aspects of rough sets. The papers are not confined only to mathematical theory but also include algorithmic aspects, applications and information about software designed for data analysis based on this theory. The volume contains also list of selected publications on rough sets which can be very useful to every one engaged in research or applications in this domain and sometimes perhaps unaware of results of other authors. The book shows that rough set theory is a vivid and vigorous domain with serious results to its credit and bright perspective for future developments. It lays on the crossroads of fuzzy sets, theory of evidence, neural networks, Petri nets and many other branches of AI, logic and mathematics. These diverse connec tions seem to be a very fertile feature of rough set theory and have essentially contributed to its wide and rapid expansion. It is worth mentioning that its philosophical roots stretch down from Leibniz, Frege and Russell up to Popper. Therefore many concepts dwelled on in rough set theory are not entirely new, nevertheless the theory can be viewed as an independent discipline on its own rights. Rough set theory has found many interesting real life applications in medicine, banking, industry and others."
Contents and treatment are fresh and very different from the standard treatments Presents a fully constructive version of what it means to do algebra The exposition is not only clear, it is friendly, philosophical, and considerate even to the most naive or inexperienced reader
Formal methods for the specification and verification of hardware and software systems are becoming more and more important as systems increase in size and complexity. The aim of the book is to illustrate progress in formal methods, based on Petri net formalisms. It contains a collection of examples arising from different fields, such as flexible manufacturing, telecommunication and workflow management systems.The book covers the main phases in the life cycle of design and implementation of a system, i.e., specification, model checking techniques for verification, analysis of properties, code generation, and execution of models. These techniques and their tool support are discussed in detail including practical issues. Amongst others, fundamental concepts such as composition, abstraction, and reusability of models, model verification, and verification of properties are systematically introduced.
Semigroups, Automata, Universal Algebra, Varieties
Includes detailed applications of cybersecurity and forensics for real life problems Addresses the challenges and solutions related to implementation of cybersecurity in multiple domains of smart computational technologies Includes the latest trends and area of research in cybersecurity and forensics Offers both quantitative and qualitative assesmnet of the topics Includes case studies that will be helpful for the researchers
The present volume of the "Handbook of the History of Logic" is
designed to establish 19th century Britain as a substantial force
in logic, developing new ideas, some of which would be overtaken
by, and other that would anticipate, the century's later
capitulation to the mathematization of logic.
The author provides an introduction to automated reasoning, and in particular to resolution theorem proving using the prover OTTER. He presents a new clausal version of von Neumann-Bernays-Goedel set theory, and lists over 400 theorems proved semiautomatically in elementary set theory. He presents a semiautomated proof that the composition of homomorphisms is a homomorphism, thus solving a challenge problem. The author next develops Peano's arithmetic, and gives more than 1200 definitions and theorems in elementary number theory. He gives part of the proof of the fundamental theorem of arithmetic (unique factorization), and gives and OTTER-generated proof of Euler's generalization of Fermat's theorem. Next he develops Tarski's geometry within OTTER. He obtains proofs of most of the challenge problems appearing in the literature, and offers further challenges. He then formalizes the modal logic calculus K4, in order to obtain very high level automated proofs of Loeb's theorem, and of Goedel's two incompleteness theorems. Finally he offers thirty-one unsolved problems in elementary number theory as challenge problems.
Robert A. Rankin, one of the world's foremost authorities on
modular forms and a founding editor of The Ramanujan Journal, died
on January 27, 2001, at the age of 85. Rankin had broad interests
and contributed fundamental papers in a wide variety of areas
within number theory, geometry, analysis, and algebra. To
commemorate Rankin's life and work, the editors have collected
together 25 papers by several eminent mathematicians reflecting
Rankin's extensive range of interests within number theory. Many of
these papers reflect Rankin's primary focus in modular forms. It is
the editors' fervent hope that mathematicians will be stimulated by
these papers and gain a greater appreciation for Rankin's
contributions to mathematics.
This book discusses the theory of triangular norms and surveys several applied fields in which triangular norms play a significant part: probabilistic metric spaces, aggregation operators, many-valued logics, fuzzy logics, sets and control, and non-additive measures together with their corresponding integrals. It includes many graphical illustrations and gives a well-balanced picture of theory and applications. It is for mathematicians, computer scientists, applied computer scientists and engineers.
Harish-Chandra¿s general Plancherel inversion theorem admits a much shorter presentation for spherical functions. Previous expositions have dealt with a general, wide class of Lie groups. This has made access to the subject difficult for outsiders, who may wish to connect some aspects with several if not all other parts of mathematics. In this book, the essential features of Harish-Chandra theory are exhibited on SLn(R), but hundreds of pages of background are replaced by short direct verifications. The material is accessible to graduate students with no background in Lie groups and representation theory.
This text explores the many transformations that the mathematical proof has undergone from its inception to its versatile, present-day use, considering the advent of high-speed computing machines. Though there are many truths to be discovered in this book, by the end it is clear that there is no formalized approach or standard method of discovery to date. Most of the proofs are discussed in detail with figures and equations accompanying them, allowing both the professional mathematician and those less familiar with mathematics to derive the same joy from reading this book.
This book explores and highlights the fertile interaction between logic and operator algebras, which in recent years has led to the resolution of several long-standing open problems on C*-algebras. The interplay between logic and operator algebras (C*-algebras, in particular) is relatively young and the author is at the forefront of this interaction. The deep level of scholarship contained in these pages is evident and opens doors to operator algebraists interested in learning about the set-theoretic methods relevant to their field, as well as to set-theorists interested in expanding their view to the non-commutative realm of operator algebras. Enough background is included from both subjects to make the book a convenient, self-contained source for students. A fair number of the exercises form an integral part of the text. They are chosen to widen and deepen the material from the corresponding chapters. Some other exercises serve as a warmup for the latter chapters.
During the last few decades the ideas, methods, and results of the theory of Boolean algebras have played an increasing role in various branches of mathematics and cybernetics. This monograph is devoted to the fundamentals of the theory of Boolean constructions in universal algebra. Also considered are the problems of presenting different varieties of universal algebra with these constructions, and applications for investigating the spectra and skeletons of varieties of universal algebras. For researchers whose work involves universal algebra and logic.
This book presents an English translation of a classic Russian text on duality theory for Heyting algebras. Written by Georgian mathematician Leo Esakia, the text proved popular among Russian-speaking logicians. This translation helps make the ideas accessible to a wider audience and pays tribute to an influential mind in mathematical logic. The book discusses the theory of Heyting algebras and closure algebras, as well as the corresponding intuitionistic and modal logics. The author introduces the key notion of a hybrid that "crossbreeds" topology (Stone spaces) and order (Kripke frames), resulting in the structures now known as Esakia spaces. The main theorems include a duality between the categories of closure algebras and of hybrids, and a duality between the categories of Heyting algebras and of so-called strict hybrids. Esakia's book was originally published in 1985. It was the first of a planned two-volume monograph on Heyting algebras. But after the collapse of the Soviet Union, the publishing house closed and the project died with it. Fortunately, this important work now lives on in this accessible translation. The Appendix of the book discusses the planned contents of the lost second volume.
Problems in Set Theory, Mathematical Logic and the Theory of Algorithms by I. Lavrov & L. Maksimova is an English translation of the fourth edition of the most popular student problem book in mathematical logic in Russian. It covers major classical topics in proof theory and the semantics of propositional and predicate logic as well as set theory and computation theory. Each chapter begins with 1-2 pages of terminology and definitions that make the book self-contained. Solutions are provided. The book is likely to become an essential part of curricula in logic.
This volume is based on the papers that were presented at the International Conference Model-Based Reasoning: Scientific Discovery, Technological Innovation, Values' (MBR'01), held at the Collegio Ghislieri, University of Pavia, Pavia, Italy, in May 2001. The previous volume Model-Based Reasoning in Scientific Discovery, edited by L. Magnani, N.J. Nersessian, and P. Thagard (Kluwer Academic/Plenum Publishers, New York, 1999; Chinese edition, China Science and Technology Press, Beijing, 2000), was based on the papers presented at the first model-based reasoning' international conference, held at the same venue in December 1998. The presentations given at the Conference explore how scientific thinking uses models and exploratory reasoning to produce creative changes in theories and concepts. Some address the problem of model-based reasoning in ethics, especially pertaining to science and technology, and stress some aspects of model-based reasoning in technological innovation. The study of diagnostic, visual, spatial, analogical, and temporal reasoning has demonstrated that there are many ways of performing intelligent and creative reasoning that cannot be described with the help only of traditional notions of reasoning such as classical logic. Understanding the contribution of modeling practices to discovery and conceptual change in science requires expanding scientific reasoning to include complex forms of creative reasoning that are not always successful and can lead to incorrect solutions. The study of these heuristic ways of reasoning is situated at the crossroads of philosophy, artificial intelligence, cognitive psychology, and logic; that is, at the heart of cognitivescience. There are several key ingredients common to the various forms of model-based reasoning. The term model' comprises both internal and external representations. The models are intended as interpretations of target physical systems, processes, phenomena, or situations. The models are retrieved or constructed on the basis of potentially satisfying salient constraints of the target domain. Moreover, in the modeling process, various forms of abstraction are used. Evaluation and adaptation take place in light of structural, causal, and/or functional constraints. Model simulation can be used to produce new states and enable evaluation of behaviors and other factors. The various contributions of the book are written by interdisciplinary researchers who are active in the area of creative reasoning in science and technology, and are logically and computationally oriented: the most recent results and achievements about the topics above are illustrated in detail in the papers.
This book presents the first algebraic treatment of quasi-truth fuzzy logic and covers the algebraic foundations of many-valued logic. It offers a comprehensive account of basic techniques and reports on important results showing the pivotal role played by perfect many-valued algebras (MV-algebras). It is well known that the first-order predicate Lukasiewicz logic is not complete with respect to the canonical set of truth values. However, it is complete with respect to all linearly ordered MV -algebras. As there are no simple linearly ordered MV-algebras in this case, infinitesimal elements of an MV-algebra are allowed to be truth values. The book presents perfect algebras as an interesting subclass of local MV-algebras and provides readers with the necessary knowledge and tools for formalizing the fuzzy concept of quasi true and quasi false. All basic concepts are introduced in detail to promote a better understanding of the more complex ones. It is an advanced and inspiring reference-guide for graduate students and researchers in the field of non-classical many-valued logics.
An introductory textbook, Logic for Justice covers, in full detail, the language and semantics of both propositional logic and first-order logic. It motivates the study of those logical systems by drawing on social and political issues. Basically, Logic for Justice frames propositional logic and first-order logic as two theories of the distinction between good arguments and bad arguments. And the book explains why, for the purposes of social justice and political reform, we need theories of that distinction. In addition, Logic for Justice is extremely lucid, thorough, and clear. It explains, and motivates, many different features of the formalism of propositional logic and first-order logic, always connecting those features back to real-world issues. Key Features Connects the study of logic to real-world social and political issues, drawing in students who might not otherwise be attracted to the subject. Offers extremely clear and thorough presentations of technical material, allowing students to learn directly from the book without having to rely on instructor explanations. Carefully explains the value of arguing well throughout one’s life, with several discussions about how to argue and how arguments – when done with care – can be helpful personally. Includes examples that appear throughout the entire book, allowing students to see how the ideas presented in the book build on each other. Provides a large and diverse set of problems for each chapter. Teaches logic by connecting formal languages to natural languages with which students are already familiar, making it much easier for students to learn how logic works.
An introductory textbook, Logic for Justice covers, in full detail, the language and semantics of both propositional logic and first-order logic. It motivates the study of those logical systems by drawing on social and political issues. Basically, Logic for Justice frames propositional logic and first-order logic as two theories of the distinction between good arguments and bad arguments. And the book explains why, for the purposes of social justice and political reform, we need theories of that distinction. In addition, Logic for Justice is extremely lucid, thorough, and clear. It explains, and motivates, many different features of the formalism of propositional logic and first-order logic, always connecting those features back to real-world issues. Key Features Connects the study of logic to real-world social and political issues, drawing in students who might not otherwise be attracted to the subject. Offers extremely clear and thorough presentations of technical material, allowing students to learn directly from the book without having to rely on instructor explanations. Carefully explains the value of arguing well throughout one’s life, with several discussions about how to argue and how arguments – when done with care – can be helpful personally. Includes examples that appear throughout the entire book, allowing students to see how the ideas presented in the book build on each other. Provides a large and diverse set of problems for each chapter. Teaches logic by connecting formal languages to natural languages with which students are already familiar, making it much easier for students to learn how logic works.
How does Russell's realist conception of the proposition and its
constituents inform the techniques for analysis which he adopted in
mathematics? Jolen Galaugher's book sheds light on this perplexing
issue. In this book, Galaugher provides a detailed treatment of
Russell's early conception of analysis in the light of the
philosophical doctrines to which it answered, and the demands
imposed by existing mathematics on his early logicist program. She
ties together the philosophical commitments which occasioned
Russell's break with idealism and the problems which guided his
selection of technical apparatus in his embrace of logicism. The
result is a detailed synthesis of the primary materials from the
emergence of Russell's realism in 1898 to his landmark theory of
descriptions in 1905. Galaugher's broad thesis is that although
Russell adopted increasingly refined techniques by which to carry
out his logical analyses and avoid the Contradiction, the most
crucial aspects of his philosophical conception of logical analysis
were retained.
Analysis and Synthesis of Singular Systems provides a base for further theoretical research and a design guide for engineering applications of singular systems. The book presents recent advances in analysis and synthesis problems, including state-feedback control, static output feedback control, filtering, dissipative control, H8 control, reliable control, sliding mode control and fuzzy control for linear singular systems and nonlinear singular systems. Less conservative and fresh novel techniques, combined with the linear matrix inequality (LMI) technique, the slack matrix method, and the reciprocally convex combination approach are applied to singular systems. This book will be of interest to academic researchers, postgraduate and undergraduate students working in control theory and singular systems.
Stig Kanger (1924-1988) made important contributions to logic and formal philosophy. Kanger's most original achievements were in the areas of general proof theory, the semantics of modal and deontic logic, and the logical analysis of the concept of rights. But he contributed significantly to action theory, preference logic and the theory of measurement as well. This is the second of two volumes dedicated to the work of Stig Kanger. The first volume is a complete collection of Kanger's philosophical papers. The present volume contains critical essays on the various aspects of Kanger's work as well as some biographical sketches. Lennart A...qvist, Jan Berg, Brian Chellas, Anatoli Degtyarev, Lars Gustafsson, SAren HalldA(c)n, Kaj BA, rge Hansen, Sven Ove Hansson, Risto Hilpinen, Jaakko Hintikka, Ghita HolmstrAm-Hintikka, Lars Lindahl, Sten LindstrAm, Ingmar PArn, Dag Prawitz, Wlodek Rabinowicz, Krister Segerberg, Amartya Sen, SAren Stenlund, GAran Sundholm, and Andrei Voronkov have contributed to this volume. |
![]() ![]() You may like...
The Art of Logic - How to Make Sense in…
Eugenia Cheng
Paperback
![]()
Algebras, Lattices, Varieties - Volume…
Ralph S Freese, Ralph N. McKenzie, …
Paperback
R3,238
Discovery Miles 32 380
Fuzzy Systems - Concepts, Methodologies…
Information Reso Management Association
Hardcover
R10,221
Discovery Miles 102 210
Temporal Logic: From Philosophy And…
Klaus Mainzer, Stefania Centrone
Hardcover
R2,051
Discovery Miles 20 510
Fuzzy Systems - Concepts, Methodologies…
Management Association Information Reso Management Association
Hardcover
R10,239
Discovery Miles 102 390
Logic from Russell to Church, Volume 5
Dov M. Gabbay, John Woods
Hardcover
R5,602
Discovery Miles 56 020
|