![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Mathematical foundations > Mathematical logic
The author provides an introduction to automated reasoning, and in particular to resolution theorem proving using the prover OTTER. He presents a new clausal version of von Neumann-Bernays-Goedel set theory, and lists over 400 theorems proved semiautomatically in elementary set theory. He presents a semiautomated proof that the composition of homomorphisms is a homomorphism, thus solving a challenge problem. The author next develops Peano's arithmetic, and gives more than 1200 definitions and theorems in elementary number theory. He gives part of the proof of the fundamental theorem of arithmetic (unique factorization), and gives and OTTER-generated proof of Euler's generalization of Fermat's theorem. Next he develops Tarski's geometry within OTTER. He obtains proofs of most of the challenge problems appearing in the literature, and offers further challenges. He then formalizes the modal logic calculus K4, in order to obtain very high level automated proofs of Loeb's theorem, and of Goedel's two incompleteness theorems. Finally he offers thirty-one unsolved problems in elementary number theory as challenge problems.
Robert A. Rankin, one of the world's foremost authorities on
modular forms and a founding editor of The Ramanujan Journal, died
on January 27, 2001, at the age of 85. Rankin had broad interests
and contributed fundamental papers in a wide variety of areas
within number theory, geometry, analysis, and algebra. To
commemorate Rankin's life and work, the editors have collected
together 25 papers by several eminent mathematicians reflecting
Rankin's extensive range of interests within number theory. Many of
these papers reflect Rankin's primary focus in modular forms. It is
the editors' fervent hope that mathematicians will be stimulated by
these papers and gain a greater appreciation for Rankin's
contributions to mathematics.
The present volume of the "Handbook of the History of Logic" is
designed to establish 19th century Britain as a substantial force
in logic, developing new ideas, some of which would be overtaken
by, and other that would anticipate, the century's later
capitulation to the mathematization of logic.
This contributed volume collects papers related to the Logic in Question workshop, which has taken place annually at Sorbonne University in Paris since 2011. Each year, the workshop brings together historians, philosophers, mathematicians, linguists, and computer scientists to explore questions related to the nature of logic and how it has developed over the years. As a result, chapter authors provide a thorough, interdisciplinary exploration of topics that have been studied in the workshop. Organized into three sections, the first part of the book focuses on historical questions related to logic, the second explores philosophical questions, and the third section is dedicated to mathematical discussions. Specific topics include: * logic and analogy* Chinese logic* nineteenth century British logic (in particular Boole and Lewis Carroll)* logical diagrams * the place and value of logic in Louis Couturat's philosophical thinking* contributions of logical analysis for mathematics education* the exceptionality of logic* the logical expressive power of natural languages* the unification of mathematics via topos theory Logic in Question will appeal to pure logicians, historians of logic, philosophers, linguists, and other researchers interested in the history of logic, making this volume a unique and valuable contribution to the field.
This book discusses the theory of triangular norms and surveys several applied fields in which triangular norms play a significant part: probabilistic metric spaces, aggregation operators, many-valued logics, fuzzy logics, sets and control, and non-additive measures together with their corresponding integrals. It includes many graphical illustrations and gives a well-balanced picture of theory and applications. It is for mathematicians, computer scientists, applied computer scientists and engineers.
Harish-Chandra¿s general Plancherel inversion theorem admits a much shorter presentation for spherical functions. Previous expositions have dealt with a general, wide class of Lie groups. This has made access to the subject difficult for outsiders, who may wish to connect some aspects with several if not all other parts of mathematics. In this book, the essential features of Harish-Chandra theory are exhibited on SLn(R), but hundreds of pages of background are replaced by short direct verifications. The material is accessible to graduate students with no background in Lie groups and representation theory.
This is an introductory undergraduate textbook in set theory. In mathematics these days, essentially everything is a set. Some knowledge of set theory is necessary part of the background everyone needs for further study of mathematics. It is also possible to study set theory for its own interest--it is a subject with intruiging results anout simple objects. This book starts with material that nobody can do without. There is no end to what can be learned of set theory, but here is a beginning.
Roy T Cook examines the Yablo paradox-a paradoxical, infinite sequence of sentences, each of which entails the falsity of all others later than it in the sequence-with special attention paid to the idea that this paradox provides us with a semantic paradox that involves no circularity. The three main chapters of the book focus, respectively, on three questions that can be (and have been) asked about the Yablo construction. First we have the Characterization Problem, which asks what patterns of sentential reference (circular or not) generate semantic paradoxes. Addressing this problem requires an interesting and fruitful detour through the theory of directed graphs, allowing us to draw interesting connections between philosophical problems and purely mathematical ones. Next is the Circularity Question, which addresses whether or not the Yablo paradox is genuinely non-circular. Answering this question is complicated: although the original formulation of the Yablo paradox is circular, it turns out that it is not circular in any sense that can bear the blame for the paradox. Further, formulations of the paradox using infinitary conjunction provide genuinely non-circular constructions. Finally, Cook turns his attention to the Generalizability Question: can the Yabloesque pattern be used to generate genuinely non-circular variants of other paradoxes, such as epistemic and set-theoretic paradoxes? Cook argues that although there are general constructions-unwindings-that transform circular constructions into Yablo-like sequences, it turns out that these sorts of constructions are not 'well-behaved' when transferred from semantic puzzles to puzzles of other sorts. He concludes with a short discussion of the connections between the Yablo paradox and the Curry paradox.
Contents and treatment are fresh and very different from the standard treatments Presents a fully constructive version of what it means to do algebra The exposition is not only clear, it is friendly, philosophical, and considerate even to the most naive or inexperienced reader
Kurt Godel (1906 - 1978) was the most outstanding logician of the
twentieth century, famous for his hallmark works on the
completeness of logic, the incompleteness of number theory, and the
consistency of the axiom of choice and the continuum hypothesis. He
is also noted for his work on constructivity, the decision problem,
and the foundations of computability theory, as well as for the
strong individuality of his writings on the philosophy of
mathematics. He is less well known for his discovery of unusual
cosmological models for Einstein's equations, in theory permitting
time travel into the past.
Kurt Godel (1906 - 1978) was the most outstanding logician of the
twentieth century, famous for his hallmark works on the
completeness of logic, the incompleteness of number theory, and the
consistency of the axiom of choice and the continuum hypothesis. He
is also noted for his work on constructivity, the decision problem,
and the foundations of computability theory, as well as for the
strong individuality of his writings on the philosophy of
mathematics. He is less well known for his discovery of unusual
cosmological models for Einstein's equations, in theory permitting
time travel into the past.
Model theory, a major branch of mathematical logic, plays a key
role connecting logic and other areas of mathematics such as
algebra, geometry, analysis, and combinatorics. Simplicity theory,
a subject of model theory, studies a class of mathematical
structures, called simple. The class includes all stable structures
(vector spaces, modules, algebraically closed fields,
differentially closed fields, and so on), and also important
unstable structures such as the random graph, smoothly approximated
structures, pseudo-finite fields, ACFA and more. Simplicity theory
supplies the uniform model theoretic points of views to such
structures in addition to their own mathematical analyses.
During the last few decades the ideas, methods, and results of the theory of Boolean algebras have played an increasing role in various branches of mathematics and cybernetics. This monograph is devoted to the fundamentals of the theory of Boolean constructions in universal algebra. Also considered are the problems of presenting different varieties of universal algebra with these constructions, and applications for investigating the spectra and skeletons of varieties of universal algebras. For researchers whose work involves universal algebra and logic.
Problems in Set Theory, Mathematical Logic and the Theory of Algorithms by I. Lavrov & L. Maksimova is an English translation of the fourth edition of the most popular student problem book in mathematical logic in Russian. It covers major classical topics in proof theory and the semantics of propositional and predicate logic as well as set theory and computation theory. Each chapter begins with 1-2 pages of terminology and definitions that make the book self-contained. Solutions are provided. The book is likely to become an essential part of curricula in logic.
This is the first logically precise, computationally implementable,
book-length account of rational belief revision. It explains how a
rational agent ought to proceed when adopting a new belief - a
difficult matter if the new belief contradicts the agent's old
beliefs.
The chapters in this timely volume aim to answer the growing interest in Arthur Schopenhauer's logic, mathematics, and philosophy of language by comprehensively exploring his work on mathematical evidence, logic diagrams, and problems of semantics. Thus, this work addresses the lack of research on these subjects in the context of Schopenhauer's oeuvre by exposing their links to modern research areas, such as the "proof without words" movement, analytic philosophy and diagrammatic reasoning, demonstrating its continued relevance to current discourse on logic. Beginning with Schopenhauer's philosophy of language, the chapters examine the individual aspects of his semantics, semiotics, translation theory, language criticism, and communication theory. Additionally, Schopenhauer's anticipation of modern contextualism is analyzed. The second section then addresses his logic, examining proof theory, metalogic, system of natural deduction, conversion theory, logical geometry, and the history of logic. Special focus is given to the role of the Euler diagrams used frequently in his lectures and their significance to broader context of his logic. In the final section, chapters discuss Schopenhauer's philosophy of mathematics while synthesizing all topics from the previous sections, emphasizing the relationship between intuition and concept. Aimed at a variety of academics, including researchers of Schopenhauer, philosophers, historians, logicians, mathematicians, and linguists, this title serves as a unique and vital resource for those interested in expanding their knowledge of Schopenhauer's work as it relates to modern mathematical and logical study.
An introductory textbook, Logic for Justice covers, in full detail, the language and semantics of both propositional logic and first-order logic. It motivates the study of those logical systems by drawing on social and political issues. Basically, Logic for Justice frames propositional logic and first-order logic as two theories of the distinction between good arguments and bad arguments. And the book explains why, for the purposes of social justice and political reform, we need theories of that distinction. In addition, Logic for Justice is extremely lucid, thorough, and clear. It explains, and motivates, many different features of the formalism of propositional logic and first-order logic, always connecting those features back to real-world issues. Key Features Connects the study of logic to real-world social and political issues, drawing in students who might not otherwise be attracted to the subject. Offers extremely clear and thorough presentations of technical material, allowing students to learn directly from the book without having to rely on instructor explanations. Carefully explains the value of arguing well throughout one’s life, with several discussions about how to argue and how arguments – when done with care – can be helpful personally. Includes examples that appear throughout the entire book, allowing students to see how the ideas presented in the book build on each other. Provides a large and diverse set of problems for each chapter. Teaches logic by connecting formal languages to natural languages with which students are already familiar, making it much easier for students to learn how logic works.
This volume is based on the papers that were presented at the International Conference Model-Based Reasoning: Scientific Discovery, Technological Innovation, Values' (MBR'01), held at the Collegio Ghislieri, University of Pavia, Pavia, Italy, in May 2001. The previous volume Model-Based Reasoning in Scientific Discovery, edited by L. Magnani, N.J. Nersessian, and P. Thagard (Kluwer Academic/Plenum Publishers, New York, 1999; Chinese edition, China Science and Technology Press, Beijing, 2000), was based on the papers presented at the first model-based reasoning' international conference, held at the same venue in December 1998. The presentations given at the Conference explore how scientific thinking uses models and exploratory reasoning to produce creative changes in theories and concepts. Some address the problem of model-based reasoning in ethics, especially pertaining to science and technology, and stress some aspects of model-based reasoning in technological innovation. The study of diagnostic, visual, spatial, analogical, and temporal reasoning has demonstrated that there are many ways of performing intelligent and creative reasoning that cannot be described with the help only of traditional notions of reasoning such as classical logic. Understanding the contribution of modeling practices to discovery and conceptual change in science requires expanding scientific reasoning to include complex forms of creative reasoning that are not always successful and can lead to incorrect solutions. The study of these heuristic ways of reasoning is situated at the crossroads of philosophy, artificial intelligence, cognitive psychology, and logic; that is, at the heart of cognitivescience. There are several key ingredients common to the various forms of model-based reasoning. The term model' comprises both internal and external representations. The models are intended as interpretations of target physical systems, processes, phenomena, or situations. The models are retrieved or constructed on the basis of potentially satisfying salient constraints of the target domain. Moreover, in the modeling process, various forms of abstraction are used. Evaluation and adaptation take place in light of structural, causal, and/or functional constraints. Model simulation can be used to produce new states and enable evaluation of behaviors and other factors. The various contributions of the book are written by interdisciplinary researchers who are active in the area of creative reasoning in science and technology, and are logically and computationally oriented: the most recent results and achievements about the topics above are illustrated in detail in the papers.
This book explores and highlights the fertile interaction between logic and operator algebras, which in recent years has led to the resolution of several long-standing open problems on C*-algebras. The interplay between logic and operator algebras (C*-algebras, in particular) is relatively young and the author is at the forefront of this interaction. The deep level of scholarship contained in these pages is evident and opens doors to operator algebraists interested in learning about the set-theoretic methods relevant to their field, as well as to set-theorists interested in expanding their view to the non-commutative realm of operator algebras. Enough background is included from both subjects to make the book a convenient, self-contained source for students. A fair number of the exercises form an integral part of the text. They are chosen to widen and deepen the material from the corresponding chapters. Some other exercises serve as a warmup for the latter chapters.
This book presents an English translation of a classic Russian text on duality theory for Heyting algebras. Written by Georgian mathematician Leo Esakia, the text proved popular among Russian-speaking logicians. This translation helps make the ideas accessible to a wider audience and pays tribute to an influential mind in mathematical logic. The book discusses the theory of Heyting algebras and closure algebras, as well as the corresponding intuitionistic and modal logics. The author introduces the key notion of a hybrid that "crossbreeds" topology (Stone spaces) and order (Kripke frames), resulting in the structures now known as Esakia spaces. The main theorems include a duality between the categories of closure algebras and of hybrids, and a duality between the categories of Heyting algebras and of so-called strict hybrids. Esakia's book was originally published in 1985. It was the first of a planned two-volume monograph on Heyting algebras. But after the collapse of the Soviet Union, the publishing house closed and the project died with it. Fortunately, this important work now lives on in this accessible translation. The Appendix of the book discusses the planned contents of the lost second volume.
Stig Kanger (1924-1988) made important contributions to logic and formal philosophy. Kanger's most original achievements were in the areas of general proof theory, the semantics of modal and deontic logic, and the logical analysis of the concept of rights. But he contributed significantly to action theory, preference logic and the theory of measurement as well. This is the second of two volumes dedicated to the work of Stig Kanger. The first volume is a complete collection of Kanger's philosophical papers. The present volume contains critical essays on the various aspects of Kanger's work as well as some biographical sketches. Lennart A...qvist, Jan Berg, Brian Chellas, Anatoli Degtyarev, Lars Gustafsson, SAren HalldA(c)n, Kaj BA, rge Hansen, Sven Ove Hansson, Risto Hilpinen, Jaakko Hintikka, Ghita HolmstrAm-Hintikka, Lars Lindahl, Sten LindstrAm, Ingmar PArn, Dag Prawitz, Wlodek Rabinowicz, Krister Segerberg, Amartya Sen, SAren Stenlund, GAran Sundholm, and Andrei Voronkov have contributed to this volume.
Paolo Mancosu presents a series of innovative studies in the history and the philosophy of logic and mathematics in the first half of the twentieth century. The Adventure of Reason is divided into five main sections: history of logic (from Russell to Tarski); foundational issues (Hilbert's program, constructivity, Wittgenstein, Godel); mathematics and phenomenology (Weyl, Becker, Mahnke); nominalism (Quine, Tarski); semantics (Tarski, Carnap, Neurath). Mancosu exploits extensive untapped archival sources to make available a wealth of new material that deepens in significant ways our understanding of these fascinating areas of modern intellectual history. At the same time, the book is a contribution to recent philosophical debates, in particular on the prospects for a successful nominalist reconstruction of mathematics, the nature of finitist intuition, the viability of alternative definitions of logical consequence, and the extent to which phenomenology can hope to account for the exact sciences.
A thorough introduction to Borel sets and measurable selections, acting as a stepping stone to descriptive set theory by presenting such important techniques as universal sets, prewellordering, scales, etc. It contains significant applications to other branches of mathematics and serves as a self-contained reference accessible by mathematicians in many different disciplines. Written in an easily understandable style, and using only naive set theory, general topology, analysis, and algebra, it is thus well suited for graduates exploring areas of mathematics for their research and for those requiring Borel sets and measurable selections in their work. |
You may like...
Oracle Applications DBA Field Guide
Paul Jackson, Elke Phelps
Paperback
|