![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Mathematical foundations > Mathematical logic
Poland has played an enormous role in the development of mathematical logic. Leading Polish logicians, like Lesniewski, Lukasiewicz and Tarski, produced several works related to philosophical logic, a field covering different topics relevant to philosophical foundations of logic itself, as well as various individual sciences. This collection presents contemporary Polish work in philosophical logic which in many respects continue the Polish way of doing philosophical logic. This book will be of interest to logicians, mathematicians, philosophers, and linguists.
This book is for researchers in computer science, mathematical logic, and philosophical logic. It shows the state of the art in current investigations of process calculi with mainly two major paradigms at work: linear logic and modal logic. The combination of approaches and pointers for further integration also suggests a grander vision for the field.
Since their appearance in the late 19th century, the Cantor--Dedekind theory of real numbers and philosophy of the continuum have emerged as pillars of standard mathematical philosophy. On the other hand, this period also witnessed the emergence of a variety of alternative theories of real numbers and corresponding theories of continua, as well as non-Archimedean geometry, non-standard analysis, and a number of important generalizations of the system of real numbers, some of which have been described as arithmetic continua of one type or another. With the exception of E.W. Hobson's essay, which is concerned with the ideas of Cantor and Dedekind and their reception at the turn of the century, the papers in the present collection are either concerned with or are contributions to, the latter groups of studies. All the contributors are outstanding authorities in their respective fields, and the essays, which are directed to historians and philosophers of mathematics as well as to mathematicians who are concerned with the foundations of their subject, are preceded by a lengthy historical introduction.
The twenty-six papers in this volume reflect the wide and still expanding range of Anil Nerode's work. A conference on Logical Methods was held in honor of Nerode's sixtieth birthday (4 June 1992) at the Mathematical Sciences Institute, Cornell University, 1-3 June 1992. Some of the conference papers are here, but others are from students, co-workers and other colleagues. The intention of the conference was to look forward, and to see the directions currently being pursued, in the development of work by, or with, Nerode. Here is a brief summary of the contents of this book. We give a retrospective view of Nerode's work. A number of specific areas are readily discerned: recursive equivalence types, recursive algebra and model theory, the theory of Turing degrees and r.e. sets, polynomial-time computability and computer science. Nerode began with automata theory and has also taken a keen interest in the history of mathematics. All these areas are represented. The one area missing is Nerode's applied mathematical work relating to the environment. Kozen's paper builds on Nerode's early work on automata. Recursive equivalence types are covered by Dekker and Barback, the latter using directly a fundamental metatheorem of Nerode. Recursive algebra is treated by Ge & Richards (group representations). Recursive model theory is the subject of papers by Hird, Moses, and Khoussainov & Dadajanov, while a combinatorial problem in recursive model theory is discussed in Cherlin & Martin's paper. Cenzer presents a paper on recursive dynamics.
The classical theory of computation has its origins in the work of Goedel, Turing, Church, and Kleene and has been an extraordinarily successful framework for theoretical computer science. The thesis of this book, however, is that it provides an inadequate foundation for modern scientific computation where most of the algorithms are real number algorithms. The goal of this book is to develop a formal theory of computation which integrates major themes of the classical theory and which is more directly applicable to problems in mathematics, numerical analysis, and scientific computing. Along the way, the authors consider such fundamental problems as: * Is the Mandelbrot set decidable? * For simple quadratic maps, is the Julia set a halting set? * What is the real complexity of Newton's method? * Is there an algorithm for deciding the knapsack problem in a ploynomial number of steps? * Is the Hilbert Nullstellensatz intractable? * Is the problem of locating a real zero of a degree four polynomial intractable? * Is linear programming tractable over the reals? The book is divided into three parts: The first part provides an extensive introduction and then proves the fundamental NP-completeness theorems of Cook-Karp and their extensions to more general number fields as the real and complex numbers. The later parts of the book develop a formal theory of computation which integrates major themes of the classical theory and which is more directly applicable to problems in mathematics, numerical analysis, and scientific computing.
This is the first book to present an up-to-date and self-contained account of Algebraic Complexity Theory that is both comprehensive and unified. Requiring of the reader only some basic algebra and offering over 350 exercises, it is well-suited as a textbook for beginners at graduate level. With its extensive bibliography covering about 500 research papers, this text is also an ideal reference book for the professional researcher. The subdivision of the contents into 21 more or less independent chapters enables readers to familiarize themselves quickly with a specific topic, and facilitates the use of this book as a basis for complementary courses in other areas such as computer algebra.
without a properly developed inconsistent calculus based on infinitesimals, then in consistent claims from the history of the calculus might well simply be symptoms of confusion. This is addressed in Chapter 5. It is further argued that mathematics has a certain primacy over logic, in that paraconsistent or relevant logics have to be based on inconsistent mathematics. If the latter turns out to be reasonably rich then paraconsistentism is vindicated; while if inconsistent mathematics has seri ous restriytions then the case for being interested in inconsistency-tolerant logics is weakened. (On such restrictions, see this chapter, section 3. ) It must be conceded that fault-tolerant computer programming (e. g. Chapter 8) finds a substantial and important use for paraconsistent logics, albeit with an epistemological motivation (see this chapter, section 3). But even here it should be noted that if inconsistent mathematics turned out to be functionally impoverished then so would inconsistent databases. 2. Summary In Chapter 2, Meyer's results on relevant arithmetic are set out, and his view that they have a bearing on G8del's incompleteness theorems is discussed. Model theory for nonclassical logics is also set out so as to be able to show that the inconsistency of inconsistent theories can be controlled or limited, but in this book model theory is kept in the background as much as possible. This is then used to study the functional properties of various equational number theories."
This book gives a rigorous yet 'physics-focused' introduction to mathematical logic that is geared towards natural science majors. We present the science major with a robust introduction to logic, focusing on the specific knowledge and skills that will unavoidably be needed in calculus topics and natural science topics in general (rather than taking a philosophical math fundamental oriented approach that is commonly found in mathematical logic textbooks).
Reasoning under uncertainty is always based on a specified language or for malism, including its particular syntax and semantics, but also on its associated inference mechanism. In the present volume of the handbook the last aspect, the algorithmic aspects of uncertainty calculi are presented. Theory has suffi ciently advanced to unfold some generally applicable fundamental structures and methods. On the other hand, particular features of specific formalisms and ap proaches to uncertainty of course still influence strongly the computational meth ods to be used. Both general as well as specific methods are included in this volume. Broadly speaking, symbolic or logical approaches to uncertainty and nu merical approaches are often distinguished. Although this distinction is somewhat misleading, it is used as a means to structure the present volume. This is even to some degree reflected in the two first chapters, which treat fundamental, general methods of computation in systems designed to represent uncertainty. It has been noted early by Shenoy and Shafer, that computations in different domains have an underlying common structure. Essentially pieces of knowledge or information are to be combined together and then focused on some particular question or domain. This can be captured in an algebraic structure called valuation algebra which is described in the first chapter. Here the basic operations of combination and focus ing (marginalization) of knowledge and information is modeled abstractly subject to simple axioms."
Goal Directed Proof Theory presents a uniform and coherent methodology for automated deduction in non-classical logics, the relevance of which to computer science is now widely acknowledged. The methodology is based on goal-directed provability. It is a generalization of the logic programming style of deduction, and it is particularly favourable for proof search. The methodology is applied for the first time in a uniform way to a wide range of non-classical systems, covering intuitionistic, intermediate, modal and substructural logics. The book can also be used as an introduction to these logical systems form a procedural perspective. Readership: Computer scientists, mathematicians and philosophers, and anyone interested in the automation of reasoning based on non-classical logics. The book is suitable for self study, its only prerequisite being some elementary knowledge of logic and proof theory.
This book is the final version of a course on algorithmic information theory and the epistemology of mathematics and physics. It discusses Einstein and Goedel's views on the nature of mathematics in the light of information theory, and sustains the thesis that mathematics is quasi-empirical. There is a foreword by Cris Calude of the University of Auckland, and supplementary material is available at the author's web site. The special feature of this book is that it presents a new "hands on" didatic approach using LISP and Mathematica software. The reader will be able to derive an understanding of the close relationship between mathematics and physics. "The Limits of Mathematics is a very personal and idiosyncratic account of Greg Chaitin's entire career in developing algorithmic information theory. The combination of the edited transcripts of his three introductory lectures maintains all the energy and content of the oral presentations, while the material on AIT itself gives a full explanation of how to implement Greg's ideas on real computers for those who want to try their hand at furthering the theory." (John Casti, Santa Fe Institute)
Logic and Complexity looks at basic logic as it is used in Computer Science, and provides students with a logical approach to Complexity theory. With plenty of exercises, this book presents classical notions of mathematical logic, such as decidability, completeness and incompleteness, as well as new ideas brought by complexity theory such as NP-completeness, randomness and approximations, providing a better understanding for efficient algorithmic solutions to problems. Divided into three parts, it covers: - Model Theory and Recursive Functions - introducing the basic model theory of propositional, 1st order, inductive definitions and 2nd order logic. Recursive functions, Turing computability and decidability are also examined. - Descriptive Complexity - looking at the relationship between definitions of problems, queries, properties of programs and their computational complexity. - Approximation - explaining how some optimization problems and counting problems can be approximated according to their logical form. Logic is important in Computer Science, particularly for verification problems and database query languages such as SQL. Students and researchers in this field will find this book of great interest.
Alfred Tarski was one of the two giants of the twentieth-century development of logic, along with Kurt Goedel. The four volumes of this collection contain all of Tarski's published papers and abstracts, as well as a comprehensive bibliography. Here will be found many of the works, spanning the period 1921 through 1979, which are the bedrock of contemporary areas of logic, whether in mathematics or philosophy. These areas include the theory of truth in formalized languages, decision methods and undecidable theories, foundations of geometry, set theory, and model theory, algebraic logic, and universal algebra.
The book presents in a mathematical clear way the fundamentals of algorithmic information theory and a few selected applications. This 2nd edition presents new and important results obtained in recent years: the characterization of computable enumerable random reals, the construction of an Omega Number for which ZFC cannot determine any digits, and the first successful attempt to compute the exact values of 64 bits of a specific Omega Number. Finally, the book contains a discussion of some interesting philosophical questions related to randomness and mathematical knowledge. "Professor Calude has produced a first-rate exposition of up-to-date work in information and randomness." D.S. Bridges, Canterbury University, co-author, with Errett Bishop, of Constructive Analysis "The second edition of this classic work is highly recommended to anyone interested in algorithmic information and randomness." G.J. Chaitin, IBM Research Division, New York, author of Conversations with a Mathematician "This book is a must for a comprehensive introduction to algorithmic information theory and for anyone interested in its applications in the natural sciences." K. Svozil, Technical University of Vienna, author of Randomness & Undecidability in Physics
This monograph details several important advances in the area known as the proofs-as-programs paradigm, a set of approaches to developing programs from proofs in constructive logic. It serves the dual purpose of providing a state-of-the-art overview of the field and detailing tools and techniques to stimulate further research. One of the booka (TM)s central themes is a general, abstract framework for developing new systems of program synthesis by adapting proofs-as-programs to new contexts, which the authors call the Curry--Howard Protocol. This protocol is used to provide two novel applications for industrial-scale, complex software engineering: contractual imperative program synthesis and structured software synthesis. These applications constitute an exemplary justification for the applicability of the protocol to different contexts. The book is intended for graduate students in computer science or mathematics who wish to extend their background in logic and type theory as well as gain experience working with logical frameworks and practical proof systems. In addition, the proofs-as-programs research community, and the wider computational logic, formal methods and software engineering communities will benefit. The applications given in the book should be of interest for researchers working in the target problem domains.
"In case you are considering to adopt this book for courses with over 50 students, please contact ""[email protected]"" for more information. "
The last three chapters of the book provide an introduction to type theory (higher-order logic). It is shown how various mathematical concepts can be formalized in this very expressive formal language. This expressive notation facilitates proofs of the classical incompleteness and undecidability theorems which are very elegant and easy to understand. The discussion of semantics makes clear the important distinction between standard and nonstandard models which is so important in understanding puzzling phenomena such as the incompleteness theorems and Skolem's Paradox about countable models of set theory. Some of the numerous exercises require giving formal proofs. A computer program called ETPS which is available from the web facilitates doing and checking such exercises. "Audience: " This volume will be of interest to mathematicians, computer scientists, and philosophers in universities, as well as to computer scientists in industry who wish to use higher-order logic for hardware and software specification and verification. "
This book contains leading survey papers on the various aspects of Abduction, both logical and numerical approaches. Abduction is central to all areas of applied reasoning, including artificial intelligence, philosophy of science, machine learning, data mining and decision theory, as well as logic itself.
A thorough, self-contained and easily accessible treatment of the theory on the polynomial best approximation of functions with respect to maximum norms. The topics include Chebychev theory, Weierstrass theorems, smoothness of functions, and continuation of functions.
Assuming no previous study in logic, this informal yet rigorous text covers the material of a standard undergraduate first course in mathematical logic, using natural deduction and leading up to the completeness theorem for first-order logic. At each stage of the text, the reader is given an intuition based on standard mathematical practice, which is subsequently developed with clean formal mathematics. Alongside the practical examples, readers learn what can and can't be calculated; for example the correctness of a derivation proving a given sequent can be tested mechanically, but there is no general mechanical test for the existence of a derivation proving the given sequent. The undecidability results are proved rigorously in an optional final chapter, assuming Matiyasevich's theorem characterising the computably enumerable relations. Rigorous proofs of the adequacy and completeness proofs of the relevant logics are provided, with careful attention to the languages involved. Optional sections discuss the classification of mathematical structures by first-order theories; the required theory of cardinality is developed from scratch. Throughout the book there are notes on historical aspects of the material, and connections with linguistics and computer science, and the discussion of syntax and semantics is influenced by modern linguistic approaches. Two basic themes in recent cognitive science studies of actual human reasoning are also introduced. Including extensive exercises and selected solutions, this text is ideal for students in logic, mathematics, philosophy, and computer science.
Our motivation for gathering the material for this book over aperiod of seven years has been to unify and simplify ideas wh ich appeared in a sizable number of re search articles during the past two decades. More specifically, it has been our aim to provide the categorical foundations for extensive work that was published on the epimorphism- and cowellpoweredness problem, predominantly for categories of topological spaces. In doing so we found the categorical not ion of closure operators interesting enough to be studied for its own sake, as it unifies and describes other significant mathematical notions and since it leads to a never-ending stream of ex amples and applications in all areas of mathematics. These are somewhat arbitrarily restricted to topology, algebra and (a small part of) discrete mathematics in this book, although other areas, such as functional analysis, would provide an equally rich and interesting supply of examples. We also had to restrict the themes in our theoretical exposition. In spite of the fact that closure operators generalize the uni versal closure operations of abelian category theory and of topos- and sheaf theory, we chose to mention these aspects only en passant, in favour of the presentation of new results more closely related to our original intentions. We also needed to refrain from studying topological concepts, such as compactness, in the setting of an arbitrary closure-equipped category, although this topic appears prominently in the published literature involving closure operators."
Parameterized complexity theory is a recent branch of computational complexity theory that provides a framework for a refined analysis of hard algorithmic problems. The central notion of the theory, fixed-parameter tractability, has led to the development of various new algorithmic techniques and a whole new theory of intractability. This book is a state-of-the-art introduction to both algorithmic techniques for fixed-parameter tractability and the structural theory of parameterized complexity classes, and it presents detailed proofs of recent advanced results that have not appeared in book form before. Several chapters are each devoted to intractability, algorithmic techniques for designing fixed-parameter tractable algorithms, and bounded fixed-parameter tractability and subexponential time complexity. The treatment is comprehensive, and the reader is supported with exercises, notes, a detailed index, and some background on complexity theory and logic. The book will be of interest to computer scientists, mathematicians and graduate students engaged with algorithms and problem complexity.
Fact finding in judicial proceedings is a dynamic process. This collection of papers considers whether computational methods or other formal logical methods developed in disciplines such as artificial intelligence, decision theory, and probability theory can facilitate the study and management of dynamic evidentiary and inferential processes in litigation. The papers gathered here have several epicenters, including (i) the dynamics of judicial proof, (ii) the relationship between artificial intelligence or formal analysis and "common sense," (iii) the logic of factual inference, including (a) the relationship between causality and inference and (b) the relationship between language and factual inference, (iv) the logic of discovery, including the role of abduction and serendipity in the process of investigation and proof of factual matters, and (v) the relationship between decision and inference.
One can distinguish, roughly speaking, two different approaches to the philosophy of mathematics. On the one hand, some philosophers (and some mathematicians) take the nature and the results of mathematicians' activities as given, and go on to ask what philosophical morals one might perhaps find in their story. On the other hand, some philosophers, logicians and mathematicians have tried or are trying to subject the very concepts which mathematicians are using in their work to critical scrutiny. In practice this usually means scrutinizing the logical and linguistic tools mathematicians wield. Such scrutiny can scarcely help relying on philosophical ideas and principles. In other words it can scarcely help being literally a study of language, truth and logic in mathematics, albeit not necessarily in the spirit of AJ. Ayer. As its title indicates, the essays included in the present volume represent the latter approach. In most of them one of the fundamental concepts in the foundations of mathematics and logic is subjected to a scrutiny from a largely novel point of view. Typically, it turns out that the concept in question is in need of a revision or reconsideration or at least can be given a new twist. The results of such a re-examination are not primarily critical, however, but typically open up new constructive possibilities. The consequences of such deconstructions and reconstructions are often quite sweeping, and are explored in the same paper or in others.
A practical introduction to the development of proofs and certified programs using Coq. An invaluable tool for researchers, students, and engineers interested in formal methods and the development of zero-fault software.
Suitable for anyone who enjoys logic puzzles Could be used as a companion book for a course on mathematical proof. The puzzles feature the same issues of problem-solving and proof-writing. For anyone who enjoys logical puzzles. For anyone interested in legal reasoning. For anyone who loves the game of baseball. |
![]() ![]() You may like...
VLSI-SoC: Design Methodologies for SoC…
Christian Piguet, Ricardo Reis, …
Hardcover
R1,555
Discovery Miles 15 550
Software-Implemented Hardware Fault…
Olga Goloubeva, Maurizio Rebaudengo, …
Hardcover
R4,485
Discovery Miles 44 850
Modeling, Simulation, And Control Of…
Kurapati Venkatesh, MengChu Zhou
Hardcover
R3,108
Discovery Miles 31 080
Discrete Geometry and Symmetry…
Marston D. E. Conder, Antoine Deza, …
Hardcover
R4,398
Discovery Miles 43 980
CS For All - An Introduction to Computer…
Christine Alvarado, Zachary Dodds, …
Paperback
R1,748
Discovery Miles 17 480
Computational Probability - Algorithms…
John H. Drew, Diane L. Evans, …
Hardcover
R4,355
Discovery Miles 43 550
|