![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Mathematical foundations > Mathematical logic
Kurt Godel, the greatest logician of our time, startled the world of mathematics in 1931 with his Theorem of Undecidability, which showed that some statements in mathematics are inherently "undecidable." His work on the completeness of logic, the incompleteness of number theory, and the consistency of the axiom of choice and the continuum theory brought him further worldwide fame. In this introductory volume, Raymond Smullyan, himself a well-known logician, guides the reader through the fascinating world of Godel's incompleteness theorems. The level of presentation is suitable for anyone with a basic acquaintance with mathematical logic. As a clear, concise introduction to a difficult but essential subject, the book will appeal to mathematicians, philosophers, and computer scientists.
This is a systematic and well-paced introduction to mathematical logic. Excellent as a course text, the book presupposes only elementary background and can be used also for self-study by more ambitious students.Starting with the basics of set theory, induction and computability, it covers propositional and first-order logic - their syntax, reasoning systems and semantics. Soundness and completeness results for Hilbert's and Gentzen's systems are presented, along with simple decidability arguments. The general applicability of various concepts and techniques is demonstrated by highlighting their consistent reuse in different contexts.Unlike in most comparable texts, presentation of syntactic reasoning systems precedes the semantic explanations. The simplicity of syntactic constructions and rules - of a high, though often neglected, pedagogical value - aids students in approaching more complex semantic issues. This order of presentation also brings forth the relative independence of syntax from the semantics, helping to appreciate the importance of the purely symbolic systems, like those underlying computers.An overview of the history of logic precedes the main text, while informal analogies precede introduction of most central concepts. These informal aspects are kept clearly apart from the technical ones. Together, they form a unique text which may be appreciated equally by lecturers and students occupied with mathematical precision, as well as those interested in the relations of logical formalisms to the problems of computability and the philosophy of logic.
This is a systematic and well-paced introduction to mathematical logic. Excellent as a course text, the book presupposes only elementary background and can be used also for self-study by more ambitious students.Starting with the basics of set theory, induction and computability, it covers propositional and first-order logic - their syntax, reasoning systems and semantics. Soundness and completeness results for Hilbert's and Gentzen's systems are presented, along with simple decidability arguments. The general applicability of various concepts and techniques is demonstrated by highlighting their consistent reuse in different contexts.Unlike in most comparable texts, presentation of syntactic reasoning systems precedes the semantic explanations. The simplicity of syntactic constructions and rules - of a high, though often neglected, pedagogical value - aids students in approaching more complex semantic issues. This order of presentation also brings forth the relative independence of syntax from the semantics, helping to appreciate the importance of the purely symbolic systems, like those underlying computers.An overview of the history of logic precedes the main text, while informal analogies precede introduction of most central concepts. These informal aspects are kept clearly apart from the technical ones. Together, they form a unique text which may be appreciated equally by lecturers and students occupied with mathematical precision, as well as those interested in the relations of logical formalisms to the problems of computability and the philosophy of logic.
Kurt Gödel (1906-1978) was the most outstanding logician of the twentieth century. This second volume of a comprehensive edition of Gödel's works collects the remainder of his published work, covering the period 1938-1974. (Volume I included all of his publications from 1929-1936). Each article or closely related group of articles is preceded by an introductory note that elucidates it and places it in historical context. The aim is to make the full body of Gödel's work as accessible and useful to as wide an audience as possible, without in any way sacrificing the requirements of historical and scientific accuracy.
Computability Theory: An Introduction to Recursion Theory,
provides a concise, comprehensive, and authoritative introduction
to contemporary computability theory, techniques, and results. The
basic concepts and techniques of computability theory are placed in
their historical, philosophical and logical context. This
presentation is characterized by an unusual breadth of coverage and
the inclusion of advanced topics not to be found elsewhere in the
literature at this level. The text includes both the standard
material for a first course in computability and more advanced
looks at degree structures, forcing, priority methods, and
determinacy. The final chapter explores a variety of computability
applications to mathematics and science. Computability Theory is an
invaluable text, reference, and guide to the direction of current
research in the field. Nowhere else will you find the techniques
and results of this beautiful and basic subject brought alive in
such an approachable way. Frequent historical information presented throughout More extensive motivation for each of the topics than other texts currently available Connects with topics not included in other textbooks, such as complexity theory "
This book is a comprehensive, systematic survey of the synthesis problem, and of region theory which underlies its solution, covering the related theory, algorithms, and applications. The authors focus on safe Petri nets and place/transition nets (P/T-nets), treating synthesis as an automated process which, given behavioural specifications or partial specifications of a system to be realized, decides whether the specifications are feasible, and then produces a Petri net realizing them exactly, or if this is not possible produces a Petri net realizing an optimal approximation of the specifications. In Part I the authors introduce elementary net synthesis. In Part II they explain variations of elementary net synthesis and the unified theory of net synthesis. The first three chapters of Part III address the linear algebraic structure of regions, synthesis of P/T-nets from finite initialized transition systems, and the synthesis of unbounded P/T-nets. Finally, the last chapter in Part III and the chapters in Part IV cover more advanced topics and applications: P/T-net with the step firing rule, extracting concurrency from transition systems, process discovery, supervisory control, and the design of speed-independent circuits. Most chapters conclude with exercises, and the book is a valuable reference for both graduate students of computer science and electrical engineering and researchers and engineers in this domain.
Weighted finite automata are classical nondeterministic finite automata in which the transitions carry weights. These weights may model, for example, the cost involved when executing a transition, the resources or time needed for this, or the probability or reliability of its successful execution. Weights can also be added to classical automata with infinite state sets like pushdown automata, and this extension constitutes the general concept of weighted automata. Since their introduction in the 1960s they have stimulated research in related areas of theoretical computer science, including formal language theory, algebra, logic, and discrete structures. Moreover, weighted automata and weighted context-free grammars have found application in natural-language processing, speech recognition, and digital image compression. This book covers all the main aspects of weighted automata and formal power series methods, ranging from theory to applications. The contributors are the leading experts in their respective areas, and each chapter presents a detailed survey of the state of the art and pointers to future research. The chapters in Part I cover the foundations of the theory of weighted automata, specifically addressing semirings, power series, and fixed point theory. Part II investigates different concepts of weighted recognizability. Part III examines alternative types of weighted automata and various discrete structures other than words. Finally, Part IV deals with applications of weighted automata, including digital image compression, fuzzy languages, model checking, and natural-language processing. Computer scientists and mathematicians will find this book an excellent survey and reference volume, and it will also be a valuable resource for students exploring this exciting research area.
Boolean functions are the building blocks of symmetric
cryptographic systems. Symmetrical cryptographic algorithms are
fundamental tools in the design of all types of digital security
systems (i.e. communications, financial and e-commerce).
The book offers a comprehensive survey of intuitionistic fuzzy logics. By reporting on both the author's research and others' findings, it provides readers with a complete overview of the field and highlights key issues and open problems, thus suggesting new research directions. Starting with an introduction to the basic elements of intuitionistic fuzzy propositional calculus, it then provides a guide to the use of intuitionistic fuzzy operators and quantifiers, and lastly presents state-of-the-art applications of intuitionistic fuzzy sets. The book is a valuable reference resource for graduate students and researchers alike.
The Equation of Knowledge: From Bayes' Rule to a Unified Philosophy of Science introduces readers to the Bayesian approach to science: teasing out the link between probability and knowledge. The author strives to make this book accessible to a very broad audience, suitable for professionals, students, and academics, as well as the enthusiastic amateur scientist/mathematician. This book also shows how Bayesianism sheds new light on nearly all areas of knowledge, from philosophy to mathematics, science and engineering, but also law, politics and everyday decision-making. Bayesian thinking is an important topic for research, which has seen dramatic progress in the recent years, and has a significant role to play in the understanding and development of AI and Machine Learning, among many other things. This book seeks to act as a tool for proselytising the benefits and limits of Bayesianism to a wider public. Features Presents the Bayesian approach as a unifying scientific method for a wide range of topics Suitable for a broad audience, including professionals, students, and academics Provides a more accessible, philosophical introduction to the subject that is offered elsewhere
This book extends the theory of revealed preference to fuzzy choice functions, providing applications to multicriteria decision making problems. The main topics of revealed preference theory are treated in the framework of fuzzy choice functions. New topics, such as the degree of dominance and similarity of vague choices, are developed. The results are applied to economic problems where partial information and human subjectivity involve vague choices and vague preferences.
This book provides an overview of the confluence of ideas in Turing's era and work and examines the impact of his work on mathematical logic and theoretical computer science. It combines contributions by well-known scientists on the history and philosophy of computability theory as well as on generalised Turing computability. By looking at the roots and at the philosophical and technical influence of Turing's work, it is possible to gather new perspectives and new research topics which might be considered as a continuation of Turing's working ideas well into the 21st century. The Stored-Program Universal Computer: Did Zuse Anticipate Turing and von Neumann?" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com
In this volume, the author investigates and argues for, a particular answer to the question: What is the right way to logically analyze modalities from natural language within formal languages? The answer is: by formalizing modal expressions in terms of predicates. But, as in the case of truth, the most intuitive modal principles lead to paradox once the modal notions are conceived as predicates. The book discusses the philosophical interpretation of these modal paradoxes and argues that any satisfactory approach to modality will have to face the paradoxes independently of the grammatical category of the modal notion. By systematizing modal principles with respect to their joint consistency and inconsistency, Stern provides an overview of the options and limitations of the predicate approach to modality that may serve as a useful starting point for future work on predicate approaches to modality. Stern also develops a general strategy for constructing philosophically attractive theories of modal notions conceived as predicates. The idea is to characterize the modal predicate by appeal to its interaction with the truth predicate. This strategy is put to use by developing the modal theories Modal Friedman-Sheard and Modal Kripke-Feferman.
This book treats modal logic as a theory, with several subtheories,
such as completeness theory, correspondence theory, duality theory
and transfer theory and is intended as a course in modal logic for
students who have had prior contact with modal logic and who wish
to study it more deeply. It presupposes training in mathematical or
logic. Very little specific knowledge is presupposed, most results
which are needed are proved in this book.
Mathematical logic is a branch of mathematics that takes axiom systems and mathematical proofs as its objects of study. This book shows how it can also provide a foundation for the development of information science and technology. The first five chapters systematically present the core topics of classical mathematical logic, including the syntax and models of first-order languages, formal inference systems, computability and representability, and Goedel's theorems. The last five chapters present extensions and developments of classical mathematical logic, particularly the concepts of version sequences of formal theories and their limits, the system of revision calculus, proschemes (formal descriptions of proof methods and strategies) and their properties, and the theory of inductive inference. All of these themes contribute to a formal theory of axiomatization and its application to the process of developing information technology and scientific theories. The book also describes the paradigm of three kinds of language environments for theories and it presents the basic properties required of a meta-language environment. Finally, the book brings these themes together by describing a workflow for scientific research in the information era in which formal methods, interactive software and human invention are all used to their advantage. The second edition of the book includes major revisions on the proof of the completeness theorem of the Gentzen system and new contents on the logic of scientific discovery, R-calculus without cut, and the operational semantics of program debugging. This book represents a valuable reference for graduate and undergraduate students and researchers in mathematics, information science and technology, and other relevant areas of natural sciences. Its first five chapters serve as an undergraduate text in mathematical logic and the last five chapters are addressed to graduate students in relevant disciplines.
This is the first text and monograph about DNA computing, a molecular approach that might revolutionize our thinking and ideas about computing. Although it is too soon to predict whether computer hardware to change from silicon to carbon and from microchips to DNA molecules, the theoretical premises have already been studied extensively. The book starts with an introduction to DNA-related matters, the basics of biochemistry and language and computation theory, and progresses to the most advanced mathematical theory developed so far in the area. All three authors are pioneers in the theory of DNA computing. Apart from being well-known scientists, they are known for their lucid writing. Many of their previous books have become classics in their field, and this book too is sure to follow their example.
Action theory is the object of growing attention in a variety of scientific disciplines and this is the first volume to offer a synthetic view of the range of approaches possible in the topic. The volume focuses on the nexus of formal action theory with a startlingly diverse set of subjects, which range from logic, linguistics, artificial intelligence and automata theory to jurisprudence, deontology and economics. It covers semantic, mathematical and logical aspects of action, showing how the problem of action breaks the boundaries of traditional branches of logic located in syntactics and semantics and now lies on lies on the borderline between logical pragmatics and praxeology. The chapters here focus on specialized tasks in formal action theory, beginning with a thorough description and formalization of the language of action and moving through material on the differing models of action theory to focus on probabilistic models, the relations of formal action theory to deontic logic and its key applications in algorithmic and programming theory. The coverage thus fills a notable lacuna in the literary corpus and offers solid formal underpinning in cognitive science by approaching the problem of cognition as a composite action of mind.
The volume analyses and develops David Makinson s efforts to make classical logic useful outside its most obvious application areas. The book contains chapters that analyse, appraise, or reshape Makinson s work and chapters that develop themes emerging from his contributions. These are grouped into major areas to which Makinsons has made highly influential contributions and the volume in its entirety is divided into four sections, each devoted to a particular area of logic: belief change, uncertain reasoning, normative systems and the resources of classical logic. Among the contributions included in the volume, one chapter focuses on the inferential preferential method, i.e. the combined use of classical logic and mechanisms of preference and choice and provides examples from Makinson s work in non-monotonic and defeasible reasoning and belief revision. One chapter offers a short autobiography by Makinson which details his discovery of modern logic, his travels across continents and reveals his intellectual encounters and inspirations. The chapter also contains an unusually explicit statement on his views on the (limited but important) role of logic in philosophy."
This book describes new methods for building intelligent systems using type-2 fuzzy logic and soft computing (SC) techniques. The authors extend the use of fuzzy logic to a higher order, which is called type-2 fuzzy logic. Combining type-2 fuzzy logic with traditional SC techniques, we can build powerful hybrid intelligent systems that can use the advantages that each technique offers. This book is intended to be a major reference tool and can be used as a textbook.
Starting with simple examples showing the relevance of cutting and pasting logics, the monograph develops a mathematical theory of combining and decomposing logics, ranging from propositional and first-order based logics to higher-order based logics as well as to non-truth functional logics. The theory covers mechanisms for combining semantic structures and deductive systems either of the same or different nature. The issue of preservation of properties is addressed.
The book is about Gentzen calculi for (the main systems of) modal logic. It is divided into three parts. In the first partwe introduce and discuss the main philosophical ideas related to proof theory, and we try to identify criteria for distinguishing good sequent calculi. In the second part we present the several attempts made from the 50's until today to provide modal logic with Gentzen calculi. In the third and and final part we analyse new calculi for modal logics, called tree-hypersequent calculi, which were recently introduced by the author. We show in a precise and clear way the main results that can be proved with and about them.
The 2005 BISC International Special Event-BISCSE 05 Forging the frontiers was held in the University of California, Berkeley, Where fuzzy logic began, from November 3-6, 2005. The successful applications of fuzzy logic and it s rapid growth suggest that the impact of fuzzy logic will be felt increasingly in coming years. Fuzzy logic is likely to play an especially important role in science and engineering, but eventually its influence may extend much farther. In many ways, fuzzy logic represents a significant paradigm shift in the aims of computing - a shift which reflects the fact that the human mind, unlike present day computers, possesses a remarkable ability to store and process information which is pervasively imprecise, uncertain and lacking in categoricity. The chapters of the book are evolved from presentations made by selected participants at the meeting and organized in two books. The papers include reports from the different front of soft computing in various industries and address the problems of different fields of research in fuzzy logic, fuzzy set and soft computing. The book provides a collection of forty four (44) articles in two volumes."
In the year 2014, both Peter Koepke and Philip Welch are celebrating their 60th birthdays, and this festive occasion is celebrated with this Festschrift in their honour containing scientific contributions of their students, collaborators, colleagues and friends which cover the various different research ares of logic in which Peter and Philip are active.
Can a line be analysed mathematically such a way that it does not fall apart into a set of discrete points? Are there objects of pure mathematics that can change through time? L. E. J. Brouwer argued that the two questions are related and that the answer to both is "yes," introducing the concept of choice sequences. This book subjects Brouwer's choice sequences to a phenomenological critique in the style of Husserl.
"Conflict, Complexity and Mathematical Social Science" provides a foundational mathematical approach to the modelling of social conflict. The book illustrates how theory and evidence can be mathematically deepened and how investigations grounded in social choice theory can provide the evidence needed to inform social practice. Countering criticism from constructivist viewpoints it shows how discourse is grounded in mathematical logic and mathematical structure. The modelling of social conflict is viewed as an application of mathematical social science and relevant models are drawn from each field of mathematical psychology, mathematical sociology, mathematical political science and mathematical economics. Unique in its multidisciplinary focus the book brings together powerful mathematical conceptualisations of the social world from a wide range of separate areas of inquiry, thereby providing a strong conceptual framework and an integrated account of social situations. It is a vital resource for all researchers in peace science, peace and conflict studies, politics, international relations, mathematical modelling in the social sciences and complexity theory. |
You may like...
Deep Learning for Chest Radiographs…
Yashvi Chandola, Jitendra Virmani, …
Paperback
R2,060
Discovery Miles 20 600
Classical Love [3d Pop-up Edition]
Various Conductors, Various Composers, …
CD
R122
Discovery Miles 1 220
|