![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Technology: general issues > Nanotechnology
Nanotechnology in Cancer Management: Precise Diagnostics toward Personalized Health Care provides a well-focused and comprehensive overview of technologies involved in early stage cancer diagnostics via the detection of various cancer biomarkers, both in-vitro and in-vivo. The book briefly describes the advancement in cancer biomarker research relating to cancer diagnostics, covering fundamental aspects of various techniques, especially transduction methodologies, such as electrochemical, optical, magnetic, etc. In addition, it describes approaches on how to make options cost-effective, scalable for clinical application, and user-friendly. Advancements in technology related to device miniaturization, performance improvement and point-of-care applications round out discussions. Final sections cover future challenges, the prospects of various techniques, and how the introduction of nanotechnology in cancer management in a personalized manner is useful.
This book examines ways in which formerly prosperous regions can renew their economy during and after a period of industrial and economic recession. Using New York's Capital Region (i.e., Albany, Troy, Schenectady, etc.) as a case study, the authors show how entrepreneurship, innovation, investment in education, research and political collaboration are critical to achieving regional success. In this way, the book provides other regions and nations with a real-life model for successful economic development. In the past half century, the United States and other nations have seen an economic decline of formerly prosperous regions as a result of new technology and globalization. One of the hardest-hit United States regions is Upstate New York or "the Capital Region"; it experienced a demoralizing hemorrhage of manufacturing companies, jobs and people to other regions and countries. To combat this, the region, with the help of state leaders, mounted a decades-long effort to renew and restore the region's economy with a particular focus on nanotechnology. As a result, New York's Capital Region successfully added thousands of well-paying, skill-intensive manufacturing jobs. New York's success story serves as a model for economic development for policy makers that includes major public investments in educational institutions and research infrastructure; partnerships between academia, industry and government; and creation of frameworks for intra-regional collaboration by business, government, and academic actors. Featuring recommendations for best practices in regional development policy, this book is appropriate for scholars, students, researchers and policy makers in regional development, innovation, R&D policy, economic development and economic growth.
The investigation of nanosized ferroelectric films and ferroelectric nanocrystals has attracted much attention during the past 15 - 20 years. There is interest in the fundamental and applied aspects. The theoretical basis is connected with the development of the Landau-Ginzburg-Devonshire (LGD) mean field and the first principles theories to the ultrathin ferroelectric films with thickness in the vicinity of critical size. Important potential applications are possible nanosize ferroelectric films in non-volatile memories, microelectronics, sensors, pyroelectric and electro-optic devices. This new area of research of ferroelectricity is still in impetuous development and far from completion. Many topics elucidated need generalization. The book contains theory and experimental data for a wide range of ferroelectric materials.
The book covers a variety of studies of organic semiconductors, from fundamental electronic states to device applications, including theoretical studies. Furthermore, innovative experimental techniques, e.g., ultrahigh sensitivity photoelectron spectroscopy, photoelectron yield spectroscopy, spin-resolved scanning tunneling microscopy (STM), and a material processing method with optical-vortex and polarization-vortex lasers, are introduced. As this book is intended to serve as a textbook for a graduate level course or as reference material for researchers in organic electronics and nanoscience from electronic states, fundamental science that is necessary to understand the research is described. It does not duplicate the books already written on organic electronics, but focuses mainly on electronic properties that arise from the nature of organic semiconductors (molecular solids). The new experimental methods introduced in this book are applicable to various materials (e.g., metals, inorganic and organic materials). Thus the book is also useful for experts working in physics, chemistry, and related engineering and industrial fields.
The 4th caesarium brought together world known experts reporting the state-of-the-art of Functional Micro-and Nanosystems. Its purpose was to identify and open up new research directions in this rapidly evolving new area and to discuss the potential with respect to applications in automotive, biochemical and information technology. Thin film technologies are an attractive approach to incorporate functional properties into micro- or nano-systems. The continuing development towards smaller structures is driven by the use of higher driving frequencies and thus smaller wavelengths, the growing integration of different functions, the higher degree of parallelism, and size requirements for the detection of bio-molecules. Hence this new technology opens up new possibilities in terms of high frequency wireless data transmission over long distances, sensors showing high spatial and time resolution and new devices to process biological, optical and electrical signals.
This book reviews the various applications of nanotechnology in human health. The introductory chapters focus on the classifications, types, synthesis, and characterization of various types of nanomaterials, while subsequent chapters highlight current applications of nanomaterials in the diagnosis and treatment of microbial and viral infections, and also in stem cell biology and regenerative medicine. Further, the book explores the potential role of nanomaterials in connection with neuronal differentiation, neuronal protection, and neurological diseases. It demonstrates the use of nanotechnology to diagnose and treat genetic disorders, as well as endocrine and metabolic syndrome diseases. It also discusses the ethics and the negative impacts of nanomaterials on human health. Lastly, it examines the intellectual property aspects and government regulations associated with the research, design, and commercialization of nanotechnology-based products. Given its scope, it offers a valuable resource for all researchers and professionals working with nanotechnology-based applications in human health.
This book includes topics in nanophysics, nanotechnology, nanomaterials, sensors, biosensors, security systems, and CBRN agents detection. There have been many significant advances in the past two years and some entirely new directions of research are just opening up. Recent developments in nanotechnology and measurement techniques now allow experimental investigation of the physical properties of nanostructured materials. The book presents new methods for the detection of chemical, biological, radiological and nuclear (CBRN) agents using chemical and biochemical sensors. Identification, protection and decontamination are the main scientific and technological responses for the modern challenges of CBRN agents.
The text features experimental investigations which use a variety of modern methods and theoretical modeling of surface structures and physicochemical processes which occur at solid surfaces. Nanomaterials and Supramolecular Structures: Physics, Chemistry, and Applications is intended for specialists experienced in the fields of Nanochemistry, Nanophysics, Surface Chemistry (and Physics), synthesis of new nanostructural functional materials and their practical applications. It will also prove useful to students, post-graduates, researchers, and lecturers.
The budding field of nanotechnology offers enormous potential for advances in medical science, engineering, transportation, computers, and many other industries. As this growing field solidifies, these technological advances may soon become a reality. Nanoscience and Advancing Computational Methods in Chemistry: Research Progress provides innovative chapters covering the growth of educational, scientific, and industrial research activities among chemical engineers and provides a medium for mutual communication between international academia and the industry. This book publishes significant research reporting new methodologies and important applications in the fields of chemical informatics and discusses latest coverage of chemical databases and the development of new experimental methods.
This book aims to present the different aspects of electrospinning for designing and fabricating high performing materials for sensors applied in gaseous and liquid environments. Since electrospinning is a versatile and inexpensive manufacturing technology, the book emphasizes the industrial applications perspective. The volume is an edited collection of the most recent and encouraging results concerning advanced nanostructured (bio) sensors. The feats achieved by these sensors range from high sensitivity to extreme operating conditions and satisfy a wide range of requirements. Most of the contributions in this book come from First International Workshop on Electrospinning for High Performance Sensing (EHPS2014) that was held in Rome in 2014, as part of the European COST Action MP1206 Electrospun Nanofibres for bio inspired composite materials and innovative industrial applications.
Nanofabrication Using Focused Ion and Electron Beams presents
fundamentals of the interaction of focused ion and electron beams
(FIB/FEB) with surfaces, as well as numerous applications of these
techniques for nanofabrication involving different materials and
devices.
Nanotechnology is expected to bring revolutionary changes in a variety of fields. This volume describes nanoparticles and their biomedical applications, and covers metal nanoparticles, metal oxide nanoparticles, rare earth based nanoparticles and graphene oxide nanoparticles. It elaborates on a number of biomedical applications, including therapeutic applications. It addresses the topic of green synthesis, in view of increasing health and environmental concerns.
Volume 4 of the Handbook of Colloid and Interface Science is a survey into the applications of colloids in a variety of fields, based on theories presented in Volumes 1 and 2. The Handbook provides a complete understanding of how colloids and interfaces can be applied in materials science, chemical engineering, and colloidal science. It is ideally suited as reference work for research scientists, universities, and industries.
This book discusses inorganic/metallic nanopesticides and fertilizers. Rather than providing a general review of the topic, it offers a critical assessment of what has been achieved and highlights future measures to allow agriculture to profit from the properties of inorganic nanoparticles. It covers a variety of topics, including strategies for preparing cost-effective nanoparticles, their chemistry both within and outside the plant, the effects of nanoparticles in the field and whether the current strategies were successful in increasing crop yields. This book will appeal to readers in academia and industry, as well as stakeholders and anyone who has an interest in the applications of inorganic nanopesticides and nanofertilizers as well as the potential use of these technologies in agriculture.
An improved understanding of the interactions between nanoparticles and plant retorts, including their uptake, localization, and activity, could revolutionize crop production through increased disease resistance, nutrient utilization, and crop yield. This may further impact other agricultural and industrial processes that are based on plant crops. This two-volume book analyses the key processes involved in the nanoparticle delivery to plants and details the interactions between plants and nanomaterials. Potential plant nanotechnology applications for enhanced nutrient uptake, increased crop productivity and plant disease management are evaluated with careful consideration regarding safe use, social acceptance and ecological impact of these technologies. Plant Nanobionics: Volume 1, Advances in the Understanding of Nanomaterials Research and Applications begins the discussion of nanotechnology applications in plants with the characterization and nanosynthesis of various microbes and covers the mechanisms and etiology of nanostructure function in microbial cells. It focuses on the potential alteration of plant production systems through the controlled release of agrochemicals and targeted delivery of biomolecules. Industrial and medical applications are included. Volume 2 continues this discussion with a focus on biosynthesis and toxicity.
This book presents mechanics miniaturization trends explored step by step, starting with the example of the miniaturization of a mechanical calculator. The ultra-miniaturization of mechanical machinery is now approaching the atomic scale. In this book, molecule-gears, trains of molecule-gears, and molecule motors are studied -one molecule at a time- on a solid surface, using scanning probe manipulation protocols and in solution as demonstrated in the European project "MEMO". All scales of mechanical machinery are presented using the various lithography techniques currently available, from the submillimeter to the nanoscale. Researchers and nanomechanical engineers will find new inspirations for the construction of minute mechanical devices which can be used in diverse hostile environments, for example under radiation constraints, on the surface membrane of a living cell or immersed in liquid. The book is presented in a format accessible for university students, in particular for those at the Master and PhD levels.
This book highlights some of the latest advances in nanotechnology and nanomaterials from leading researchers in Ukraine, Europe and beyond. It features contributions presented at the 8th International Science and Practice Conference Nanotechnology and Nanomaterials (NANO2020), which was held on August 26-29, 2020 at Lviv Polytechnic National University, and was jointly organized by the Institute of Physics of the National Academy of Sciences of Ukraine, University of Tartu (Estonia), University of Turin (Italy), and Pierre and Marie Curie University (France). Internationally recognized experts from a wide range of universities and research institutions share their knowledge and key findings on material properties, behavior, and synthesis. This book's companion volume also addresses topics such as nano-optics, energy storage, and biomedical applications.
Leading researchers from industry, academy, government and private research institutions across the globe have contributed to this book, which presents all types of rubber blend composites based on biomaterials as well as nanocomposites. It discusses the fundamental preparation methods of these materials and summarizes many of the latest technical research advances, offering an essential guide for academics, researchers, scientists, engineers and students alike.
This book presents carbon nanotubes as a potential material for the development of new waste water treatment technologies. Reviews on adsorption, catalysis, membrane, filtration and desinfection methods are provided. A special chapter presents the use of carbon nanotubes to sense and monitor water pollutants. The text underlies each technology and process as well as the current commercialization efforts. Research gaps are highlighted at the end with links to further reading material in the field.
Compiles current research on nanomaterials as well as their versatile applications in plant biotic stress management Describes role of nanomaterials as enzyme-mimicking nanoparticles, nano-pesticides, nano-fertilizers, and nanomaterials Reviews day-to-day problems related to crop plants, their diagnostics and stress management Explores trends in nanomaterials utility towards diagnostics, enzyme-mimicking, crop protection and their possible role in plant disease management Includes pertinent nanomaterials including synthetic strategies, properties, chemistry, and applications
Fifth volume of a 40 volume series on nanoscience and nanotechnology, edited by the renowned scientist Challa S.S.R. Kumar. This handbook gives a comprehensive overview about X-ray and Neutron Techniques for Nanomaterials Characterization. Modern applications and state-of-the-art techniques are covered and make this volume an essential reading for research scientists in academia and industry.
Describes how nanomaterial functionalization is being used to create more effective sensors. Discusses various synthesis procedures, characterization techniques, and which nanomaterials should be used for sensing applications. Provides an in-depth look into oxide nanostructures, carbon nanostructures, and 2D material fabrication. Explores the challenges of using nanoscale sensors for large-scale industrial applications.
This is a textbook on the theory and calculation of molecular
electromagnetic and spectroscopic properties designed for a
one-semester course with lectures and exercise classes. The idea of
the book is to provide thorough background knowledge for the
calculation of electromagnetic and spectroscopic properties of
molecules with modern quantum chemical software packages.
This book describes environmental remediation technologies to remove pollutants from the environment and the environmental materials used for remediation. The focus is on the functional design of environmental materials, especially to create materials for coping with a variety of pollutants in different concentrations and conditions. The authors present research highlights from their work in this area and aim to inspire the development of new concepts in environmental remediation. This work is a must-read for practitioners who are exploring restoration technologies and materials for solving environmental pollution as well as researchers and graduate students studying environmental remediation. A number of Asian researchers who have been engaged in these studies are among the authors, and this book will contribute to solving pollution problems in Asia as well as the rest of the world.
With a rigorous and comprehensive coverage, the second edition of Compliant Mechanisms: Design of Flexure Hinges provides practical answers to the design and analysis of devices that incorporate flexible hinges. Complex-shaped flexible-hinge mechanisms are generated from basic elastic segments by means of a bottom-up compliance (flexibility) approach. The same compliance method and the classical finite element analysis are utilized to study the quasi-static and dynamic performances of these compliant mechanisms. This book offers easy-to-use mathematical tools to investigate a wealth of flexible-hinge configurations and two- or three-dimensional compliant mechanism applications. FEATURES Introduces a bottom-up compliance-based approach to characterize the flexibility of new and existing flexible hinges of straight- and curvilinear-axis configurations Develops a consistent linear lumped-parameter compliance model to thoroughly describe the quasi-static and dynamic behavior of planar/spatial, serial/parallel flexible-hinge mechanisms Utilizes the finite element method to analyze the quasi-statics and dynamics of compliant mechanisms by means of straight- and curvilinear-axis flexible-hinge elements Covers miscellaneous topics such as stress concentration, yielding and related maximum load, precision of rotation of straight- and circular-axis flexible hinges, temperature effects on compliances, layered flexible hinges and piezoelectric actuation/sensing Offers multiple solved examples of flexible hinges and flexible-hinge mechanisms. This book should serve as a reference to students, researchers, academics and anyone interested to investigate precision flexible-hinge mechanisms by linear model-based methods in various areas of mechanical, aerospace or biomedical engineering, as well as in robotics and micro-/nanosystems. |
![]() ![]() You may like...
Human Sexuality - Function, Dysfunction…
Ami Rokach, Karishma Patel
Paperback
R2,185
Discovery Miles 21 850
Advances in Atomic, Molecular, and…
Susanne F Yelin, Louis F. DiMauro, …
Hardcover
R5,423
Discovery Miles 54 230
Linear Systems Control - Deterministic…
Elbert Hendricks, Ole Jannerup, …
Hardcover
R5,649
Discovery Miles 56 490
|