![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Technology: general issues > Nanotechnology
Authored by a rising star in the field and one of its pioneers,
this textbook is ideal for interdisciplinary courses -- bridging
chemistry, materials science, physics and biology. Adopting a
completely new and visionary approach, this is a unique learning
tool, focusing on just six concepts crucial for understanding
nanochemistry: surface, size, shape, self-assembly, defects and the
interface of biology and nanochemistry. These concepts are
elucidated through the analysis of six materials representing the
real life application of the nanochemistry concepts. The teaching
questions included provide real "food for thought," thus training
students to think as a researcher does and so develop
problem-solving skills.
Boron nitride was first produced in the 18th century and, by virtue of its extraordinary mechanical strength, has found extensive application in industrial processes since the 1940s. However, the more recent discovery that boron nitride allotropes are as structurally diverse as those of carbon (e.g. fullerenes, graphene, carbon nanotubes) has placed this material, and particularly its low-dimensional allotropes, back at the forefront of modern material science. This book provides a comprehensive history of this rapid rise in the status of boron nitride and boron nitride nanomaterials, spanning the earliest examples of three-dimensional boron nitride allotropes, through to contemporary structures such as monolayer hexagonal boron nitride, boron nitride nanomeshes, boron nitride nanotubes and the incorporation of boron nitride into cutting-edge van der Waals heterostructures. It specifically focuses on the properties, applications and synthesis techniques for each of these allotropes and examines how the evolution in boron nitride production methods is linked to that in our understanding of how low-dimensional nanomaterials self-assemble, or 'grow', during synthesis. The book demonstrates the key synergy between growth mechanisms and the development of new, advanced nanostructured materials.
This book provides an overview of biocomposite chemistry, chemical modifications, characterization and applications in biomedicine, with emphasis on recent advances in the field. Authored by experts, the chapters discuss the design, development and selection of biomedical composites for a particular therapeutic application, as well as providing insight into the regulatory and clinical aspects of biomedical composite use. While this book is primarily intended for scientists from the fields of medical, pharmaceutical, biotechnological and biomedical engineering, it is also useful as an advanced text for students and research scholars.
This book provides a comprehensive overview of engineering nanostructures mediated by functional polymers in combination with optimal synthesis and processing techniques. The focus is on polymer-engineered nanostructures for advanced energy applications. It discusses a variety of polymers that function as precursors, templates, nano-reactors, surfactants, stabilizers, modifiers, dopants, and spacers for directing self-assembly, assisting organization, and templating growth of numerous diverse nanostructures. It also presents a wide range of polymer processing techniques that enable the efficient design and optimal fabrication of nanostructured polymers, inorganics, and organic-inorganic nanocomposites using in-situ hybridization and/or ex-situ recombination methodologies. Combining state-of-the-art knowledge from polymer-guided fabrication of advanced nanostructures and their unique properties, it especially highlights the new, cutting-edge breakthroughs, future horizons, and insights into such nanostructured materials in applications such as photovoltaics, fuel cells, thermoelectrics, piezoelectrics, ferroelectrics, batteries, supercapacitors, photocatalysis, and hydrogen generation and storage. It offers an instructive and approachable guide to polymer-engineered nanostructures for further development of advanced energy materials to meet ever-increasing global energy demands. Interdisciplinary and broad perspectives from internationally respected contributors ensure this book serves as a valuable reference source for scientists, students, and engineers working in polymer science, renewable energy materials, materials engineering, chemistry, physics, surface/interface science, and nanotechnology. It is also suitable as a textbook for universities, institutes, and industrial institutions.
Photonics has long been considered an attractive substrate for next generation implementations of machine-learning concepts. Reservoir Computing tremendously facilitated the realization of recurrent neural networks in analogue hardware. This concept exploits the properties of complex nonlinear dynamical systems, giving rise to photonic reservoirs implemented by semiconductor lasers, telecommunication modulators and integrated photonic chips.
* Covers the state-of-the-art progress in one-dimensional nanomaterials polymeric materials * Presents synthesis, characterization, and applications of one-dimensional polymeric nanocomposites for energy production, storage, flexible electronics, sensors, and biomedical applications * Provides fundamentals of electrochemical behavior and their understanding of energy devices such as fuel cells, batteries, supercapacitors, solar cells, etc. * Provides new directions to scientists, researchers, and students to better understand the chemistry, technologies, and applications of one-dimensional polymeric nanocomposites
Features Contains discussions of the basic principles of quantum optics and its importance to lasers, quantum information, and quantum computation. Provides references and a further reading list to additional scientific literature so that readers can use the book as a starting point to then follow up with a more advanced treatment of the topics covered. Requires only a basic background in undergraduate electrodynamics, quantum mechanics, and statistical mechanics.
This book reviews the potential of next-generation point-of-care diagnosis in healthcare. It also discusses the printed chip-based assay (Lab-on-a-Chip, Lab-on-a-PCB) for rapid, inexpensive biomarkers detection. The book presents the development of sensory systems based on the use of nanomaterials. It examines different biosensors for medical diagnosis using surface modification strategies of transducers. It presents electrochemical concepts based on different nanobiomaterials and nanocomposites for cancer theranostics. Notably, the book examines the recent advances in wearable, cost-effective hemodynamic sensors to detect diseases at an early stage. It further explores the combination of redox cycling and electrochemical detection to develop ultrasensitive and reproducible biosensors for point-of-care testing. Finally, the book summarizes the significant challenges in the point of care diagnostics and its future opportunities in healthcare.
This thesis develops next-generation multi-degree-of-freedom gyroscopes and inertial measurement units (IMU) using micro-electromechanical-systems (MEMS) technology. It covers both a comprehensive study of the physics of resonator gyroscopes and novel micro/nano-fabrication solutions to key performance limits in MEMS resonator gyroscopes. Firstly, theoretical and experimental studies of physical phenomena including mode localization, nonlinear behavior, and energy dissipation provide new insights into challenges like quadrature errors and flicker noise in resonator gyroscope systems. Secondly, advanced designs and micro/nano-fabrication methods developed in this work demonstrate valuable applications to a wide range of MEMS/NEMS devices. In particular, the HARPSS+ process platform established in this thesis features a novel slanted nano-gap transducer, which enabled the first wafer-level-packaged single-chip IMU prototype with co-fabricated high-frequency resonant triaxial gyroscopes and high-bandwidth triaxial micro-gravity accelerometers. This prototype demonstrates performance amongst the highest to date, with unmatched robustness and potential for flexible substrate integration and ultra-low-power operation. This thesis shows a path toward future low-power IMU-based applications including wearable inertial sensors, health informatics, and personal inertial navigation.
This book offers a complete and well-organized review of the latest advances made in developing ultra-weak chemiluminescence techniques for analytical applications. It systematically introduces the current theories, mechanisms, instruments, technologies, and real applications of ultra-weak chemiluminescence. Compared to books devoted to the normal chemiluminescence and bioluminescence, this book covers a wide range of ultra-weak chemiluminescence based on inorganic chemical reactions and nanotechnology from a principle and practical point of view. This book is intended for readers who are interested in expanding their knowledge of chemiluminescence and employing ultra-weak chemiluminescence techniques to develop new detection methods for analytical applications.
Applications of nanotechnology are the remarkable sizes dependent on physiochemical properties of nanomaterials that have led to the developed protocols for synthesizing nanomaterials over a range of size, shapes and chemical compositions. Nanomaterials are normally powders composed of nanoparticles which exhibit properties that are different from powders. Nanotechnology is the engineering of functional systems at the molecular scale with their wide applications in energy sector, including -but not limited to- energy resources, energy conversion, energy storage, and energy usage; drug delivery systems including- safety concerns, perspective, challenges, target therapeutics for cancer, neurodegenerative diseases and other human diseases, nanomaterials based tissue engineering; and food sectors including to- food safety and quality, opportunities, challenges, nanomaterials based enhancing food packing, and determination of foodborne pathogens, agro and marine food, analysis of market, regulations and future prospects. The utilization of nanotechnology in the energy field will be emphasized and highlighted, in accordance to their prominent and high impact in this particular field. Recent trends and significant benefits of nanotechnology in the energy field will be revealed to the readers, and their promising advanced applications will be discussed. The current drug discovery paradigm constantly needs to improve, enhance efficiency and reduce time to the market on the basis of designing new drug discovery, drug delivery and pharmaceutical manufacturing. In this book will be highlighted nanotechnology based drug delivery is an important aspect of medicine, as more potent and specific drugs that are particularly discussed the understanding of disease pathways. Several biomaterials can be applied to small-molecule drugs as controlled release reservoirs for drug delivery and provide new insights into disease processes, thus understanding the mechanisms of action of drugs. Applications of food nanotechnology are an area of emerging interest for the food industry, for the reason, in this book will be given more priority to discuss the uses of nanomaterials for food packing, food safety and quality, and to remove the contaminated or spoiled by foodborne pathogens. And also nanotechnology based food products will be discussed how making them tastier, healthier, and more nutritious such as vitamins, to reduce fat content, and to ensure they do not degrade during a product's shelf life. Nanotechnology is basically the uses of nanomaterials, devices and systems through the control of matter on the nanometer scale. Multidisciplinary studies are required the technology for discovery and moving so fast from concept to the reality. Nanotechnology always not only provided more benefits in energy, drugs and food products but also provided significantly benefits around multidisciplinary field applications.
Presents the state of the art in conductive composite materials and their application in flexible strain sensors Uniquely combines the processing, structure, properties, and applications of conductive polymer composites Integrates theory and practice Benefits plastics converters who wish to take full advantage of the potential of conductive plastic materials
Explains theory and practical applications of nanomaterials as antiviral agents Reviews upscaling of nanomaterials from laboratory to fabrication stage Illustrates nanocurcumin, silver nanoparticles, and carbon nanoparticles for biomedical applications Highlights role of nanotechnology in effectively combating viral infections and pandemics Includes case studies of specific pharma companies
This book provides an interesting snapshot of recent advances in the field of single molecule nanosensing. The ability to sense single molecules, and to precisely monitor and control their motion is crucial to build a microscopic understanding of key processes in nature, from protein folding to chemical reactions. Recently a range of new techniques have been developed that allow single molecule sensing and control without the use of fluorescent labels. This volume provides an overview of recent advances that take advantage of micro- and nanoscale sensing technologies and provide the prospect for rapid future progress. The book endeavors to provide basic introductions to key techniques, recent research highlights, and an outlook on big challenges in the field and where it will go in future. It is a valuable contribution to the field of single molecule nanosensing and it will be of great interest to graduates and researchers working in this topic.
This book is specifically designed to provide information about various nanocarriers currently developed under the emerging field of nanotheranostics for a sustained, controlled, and targeted co-delivery of diagnostic and therapeutic agents. Diverse theranostic applications of nanotechnology and their limitations are also addressed. It integrates nanobiotechnology with theranostic applications. The combined term nanotheranostics has diverse application particularly in chemotherapy and other infectious diseases.Among other topics addressed are antimicrobial resistance, targeting intra-cellular pathogens, viruses and bacteria, chemotherapy, cancer therapeutics, and inflammatory disorders. This interdisciplinary volume is essential for a diverse group of readers including nanotechnologists, microbiologists, biotechnologists, bioengineering and bioprocess industry.
* Covers topics such as fundamentals of sensors and their working principles * Details recent materials and technologies used for flexible and wearable sensors * Covers emerging applications
This textbook is conceived for a one-semester course at the upper undergraduate or freshman graduate level. The book was written With the fact that nanotechnology is a vast field where the applications range from paint to nanomedicine, through plasmonics and catalysis. An introductory course must be a compromise between a quantitative and a qualitative treatment. For that, this textbook is more quantitative than others in the market, which often do not treat the key concepts with enough depth. This textbook focuses on the key physical and chemical principles and uses many formulas and equations within with the one-semester time constraint.
Thanks to their unique properties, chitosan and chitosan-based materials have numerous applications in the field of biomedicine, especially in drug delivery. This book examines biomedical applications of functional chitosan, exploring the various functions and applications in the development of chitosan-based biomaterials. It also describes the chemical structure of chitosan and discusses the relationship between their structure and functions, providing a theoretical basis for the design of biomaterials. Lastly, it reviews chemically modified and composite materials of chitin and chitosan derivatives for biomedical applications, such as tissue engineering, nanomedicine, drug delivery, and gene delivery.
The applications of nanoparticulate drug delivery have gained significant attention in cancer diagnosis and treatment. Owing to their unique features and design, nanomedicines have made remarkable progress in eliminating dreadful tumors. Research in cancer nanomedicine spans multitudes of drug-delivery systems that include high tumor-targeting ability, sensitivity toward tumor microenvironments, and improved efficacy. Various nanocarriers have been developed and approved for anti-tumor drug targeting. These nanocarriers, such as liposomes, micelles, nanotubes, dendrimers, and peptides, offer several advantages including high selectivity, multifunctionality, specificity, biocompatibility, and precise control of drug release. This book provides complete information about each aspect of nanomaterials and nanotherapeutics, including synthesis, analysis, disease diagnosis, mechanistic insight, targeted drug delivery, and clinical implications in a concise and informative way. It presents simple and reader-friendly representations of the mechanisms of action of nanomaterials on cellular targets and highlights the challenges in targeted drug delivery with ongoing chemotherapeutic drugs.
This book demonstrates how the new phenomena in the nanometer scale serve as the basis for the invention and development of novel nanoelectronic devices and how they are used for engineering nanostructures and metamaterials with unusual properties. It discusses topics such as superconducting spin-valve effect and thermal spin transport, which are important for developing spintronics; fabrication of nanostructures from antagonistic materials like ferromagnets and superconductors, which lead to a novel non-conventional FFLO-superconducting state; calculations of functional nanostructures with an exotic triplet superconductivity, which are the basis for novel nanoelectronic devices, such as superconducting spin valve, thin-film superconducting quantum interference devices (SQUIDs) and memory-elements (MRAM). Starting with theoretical chapters about triplet superconductivity, the book then introduces new ideas and approaches in the fundamentals of superconducting electronics. It presents various quantum devices based on the new theoretical approaches, demonstrating the enormous potential of the electronics of 21st century - spintronics. The book is useful for a broad audience, including researchers, engineers, PhD graduates, students and others wanting to gain insights into the frontiers of nanoscience.
This thesis introduces the preparation of a series of Mg-based thin films with different structures using magnetron sputtering, as well as the systematical investigation of their gaseous and electrochemical hydrogen storage properties under mild conditions. It reviews promising applications of Mg-based thin films in smart windows, hydrogen sensors and Ni-MH batteries, while also providing significant insights into research conducted on Mg-based hydrogen storage materials, especially the Mg-based films. Moreover, the unique experimental procedures and methods (including electric resistance, optical transmittance and electrochemical methods) used in this thesis will serve as a valuable reference for researchers in the field of Mg-based hydrogen storage films.
First book to introduce strain engineering in the design of flexible and stretchable electronic devices Computer aided microelectronics education to enhance students learning Presents detailed examples of two- and three-dimensional process and device simulation Broad coverage spanning conventional to the state-of-the-art stress- and strain-engineered devices at 7 nm and smaller technology nodes
Nanotechnology, Volume 46, the latest release in the Methods in Microbiology series, contains review articles on the application of nanotechnology in various fields of microbiology, including environmental microbiology, food microbiology and medical microbiology. Chapters in this new release include discussions on the Biosynthesis of Nanomaterials Utilizing Biomacromolecules, Nanotechnology in Medical Biology - Application of Nanodiagnostics in Infectious Diseases, Applications of Nanotechnology in Food Microbiology, Biosynthesis of Nanomaterials Utilizing Microorganisms, Nanotechnology in Medical Biology - Interaction of Pathogens and Nanostructured Surfaces, Biocompatible Polymers: Synthesis Methods, Surface Functionalization and its Biomedical Applications, and The Bacterial Flagellum.
This book presents a review of preparation methods for environmentally friendly nanocomposite materials. It describes the combination of biodegradable and biocompatible polymer matrices with nanoparticles, leading to finished products preferably prepared by sustainable methods. The chapters also describe how the addition of synthetic or non-biodegradable particles can influence the properties of the final products. This book presents a general overview of the process from the preparation to the final applications of green nanocomposites. In addition, the book also details the trends, challenges, and prospects of this type of composites. The content can be divided into two sections. The first one presents a brief introduction about the importance of keeping the environment free of non-degradable pollutants. It also describes fundamentals, trends, and general applications of green materials. The second section focuses on the description of some of the green-based materials most used nowadays and other innovative materials, just like elastomers of natural origin. The book comprises the reintegration of these materials into the environment, followed by some biomedical, biological, and energy storage applications. |
![]() ![]() You may like...
Approximation Theory - Moduli of…
george A. Anastassiou, Sorin G. Gal
Hardcover
R3,189
Discovery Miles 31 890
African Insurgencies - From the Colonial…
Richard A. Lobban Jr, Chris H. Dalton
Hardcover
R2,530
Discovery Miles 25 300
|