![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Technology: general issues > Nanotechnology
This monograph investigates the entropy in heavily doped (HD) quantized structures by analyzing under the influence of magnetic quantization, crossed electric and quantizing fields the range from HD quantum confined nonlinear optical materials to HgTe/CdTe HD superlattices with graded interfaces. Finally the authors address various challenges in today's research of optoelectronic materials and give an outlook to future studies.
This book proposes the importance of new systems of drug design and delivery based on cancer pathophysiology in addition to cancer molecular and cellular biology. The current studies based on molecular and cellular biology while ignoring pathophysiology and pharmacology may be leading the development of antitumor drugs in the wrong direction and wasting a lot of money. Although there have been numerous reports of genetic and phenotypic changes in tumors, a large body of pathological and clinical evidence supports the conclusion that there are no pivotal changes in tumor cells that distinguish them consistently and reliably from normal dividing cells. Unlike using antibiotics against bacterial infection, therefore, anticancer agents (ACAs) need to be delivered selectively to tumor tissues and should be kept there long enough to reproduce the concentrations they reach in the Petri dish, which is a closed space where the cytocidal effects of any anticancer agents (ACAs) including molecular targeting agents are very strong. In the body, however, administered ACAs are cleared with the passage of time. Furthermore, most human cancers possess abundant stroma that hinders the penetration of drugs into the tumor microenvironment. Therefore, to overcome these difficulties, novel drug delivery systems have been designed, such as nanoparticles and ACA conjugated antibodies to stromal components and to cancer cell surface antigens. These advances are described in this book after the first section, which describes core features of the pathophysiology of the cancer microenvironment, on which these new developments are based.
The increasing prevalence of nanotechnologies has led to the birth of "nanoelectromagnetics," a novel applied science related to the interaction of electromagnetic radiation with quantum mechanical low-dimensional systems. This book provides an overview of the latest advances in nanoelectromagnetics, and presents contributions from an interdisciplinary community of scientists and technologists involved in this research topic. The aspects covered here range from the synthesis of nanostructures and nanocomposites to their characterization, and from the design of devices and systems to their fabrication. The book also focuses on the novel frontier of terahertz technology, which has been expanded by the impressive strides made in nanotechnology, and presents a comprehensive overview of the: - synthesis of various nanostructured materials; - study of their electrical and optical properties; - use of nano-sized elements and nanostructures as building blocks for devices; - design and fabrication of nanotechnology devices operating in the THz, IR and optical range. The book introduces the reader to materials like nanocomposites, graphene nanoplatelets, carbon nanotubes, metal nanotubes, and silicon nanostructures; to devices like photonic crystals, microcavities, antennas, and interconnects; and to applications like sensing and imaging, with a special emphasis on the THz frequency range.
This book highlights the recent advances of thermodynamics and biophysics in drug delivery nanosystems and in biomedical nanodevices. The up-to-date book provides an in-depth knowledge of bio-inspired nanotechnological systems for pharmaceutical applications. Biophysics and thermodynamics, supported by mathematics, are the locomotive by which the drug transportation and the targeting processes will be achieved under the light of the modern pharmacotherapy. They are considered as scientific tools that promote the understanding of physicochemical and thermotropic functionality and behavior of artificial cell membranes and structures like nanoparticulate systems. Therefore, this book focusses on new aspects of biophysics and thermodynamics as important elements for evaluating biomedical nanosystems, and it correlates their physicochemical, biophysical and thermodynamical behaviour with those of a living organism. In 2018, Prof. Demetzos was honored with an award by the Order of Sciences of the Academy of Athens for his scientific contribution in Pharmaceutical Nanotechnology.
Exhaustively covers nanotechnology, metal oxide- carbon nanocomposites and their application in soil, water, and air treatments Explores pollutants Nano-sensing and their Remediation towards Environmental Safety Includes economics analysis and environmental aspects of metal oxide materials Describes why properties of oxide-carbon based nanomaterials useful for environmental applications Discusses current cases studies of remediation technologies
Features Comprehensive overview of energy storage devices, an important field of interest for researchers worldwide. Explores the importance and growing impact of batteries and supercapacitors. Emphasizes the fundamental theories, electrochemical mechanism and its computational view point, but also discusses recent developments in electrode designing based on nanomaterials, separators, fabrication of advanced devices and their performances.
The main intention of the editors of the book is the demonstration of the intrinsic correlation and mutual influence of three important components of nanoscience: new phenomena - nanomaterials - nanodevices. This is the organizing concept of the book. To discover new phenomena it is necessary to develop novel nanotechnological processes for fabrication of nanomaterials. Nanostructures and new phenomena serve as the base for the development of novel nanoelectronic devices and systems. The articles selected for the book illustrate this interrelation.
This book comprehensively summarizes the recent achievements and trends in encapsulation of micro- and nanocontainers for applications in smart materials. It covers the fundamentals of processing and techniques for encapsulation with emphasis on preparation, properties, application, and future prospects of encapsulation process for smart applications in pharmaceuticals, textiles, biomedical, food packaging, composites, friction/wear, phase change materials, and coatings. Academics, researchers, scientists, engineers, and students in the field of smart materials will benefit from this book.
This book elaborates on the fabrication of organic-inorganic hybrid nanomaterials, their advantages, self-assembly and their applications in diverse fields of energy, biotechnology, biomedical and environment. The contents provide insight into tools, tricks and challenges associated with techniques of fabrication and future challenges and risks. This book also discusses the properties of modern hybrid nanomaterials and their performance, durability, reproducibility and sensitivity. It will be useful for students and researchers in the area of nanotechnology, science, engineering and environmental chemistry. This volume will also be useful for researchers and professionals working on nanohybrid materials.
Dynamics of Molecular Excitons provides a comprehensive, but concise description of major theories on the dynamics of molecular excitons, intended to serve as a self-contained resource on the topic. Designed to help those new to this area gain proficiency in this field, experts will also find the book useful in developing a deeper understanding of the subject. The starting point of the book is the standard microscopic definition of molecular Hamiltonians presented in commonly accepted modern quantum mechanical notations. Major assumptions and approximations involved in constructing Frenkel-type exciton Hamiltonians, which are well established, but are often hidden under arcane notations and approximations of old publications, are presented in detail. This will help quantum chemists understand the major assumptions involved in the definition of commonly used exciton models. Rate theories of exciton dynamics, such as Foerster and Dexter theories and their modern generalizations, are presented in a unified and detailed manner. In addition, important aspects that are often neglected, such as local field effect and the role of fluctuating environments, are discussed. Various quantum dynamics methods allowing coherent dynamics of excitons are presented in a systematic manner in the context of quantum master equations or path integral formalisms. The author also provides a detailed theoretical explanation for the major spectroscopic techniques probing exciton dynamics, including modern two-dimensional electronic spectroscopy, with a critical assessment of the implications of these spectroscopic measurements. Finally, the book includes a brief overview of major applications including an explanation of organic photovoltaic materials and natural light harvesting complexes.
Although nanotechnology has revolutionized fields such as medicine, genetics, biology, bioengineering, mechanics, and chemistry, its increasing application in the food industry is relatively recent in comparison. Nanotechnology is being used to discover new methods for creating new flavors, extending food shelf life, and improving food protection and nutritional value. Nanotechnology in the food industry is now being explored for intelligent nutrient delivery systems, "smart" foods, contaminant detection nanodevices and nanosensors, advanced food processing, antimicrobial chemicals, encapsulation, and green nanomaterials. This new three-volume set, Nanotechnology Horizons in Food Process Engineering, addresses a multitude of topical issues and new developments in the field. Volume 1 focuses food preservation, food packaging and sustainable agriculture, while Volume 2 looks at nanotechnology in food process engineering, applications of biomaterials in food products, and the use of modern nanotechnology for human health. The third volume explores the newest trends in nanotechnology for food applications and their application for improving food delivery systems. Together, these three volumes provide a comprehensive and in-depth look at the emerging status of nanotechnology in the food processing industry, explaining the benefits and drawbacks of various methodologies that will aid in the improvement and development of food product sourcing and food hygiene monitoring methods. Volume 3: Trends, Nanomaterials and Food Delivery provides an overview of the current trends in nanotechnology for food applications and food delivery systems. Topics include a collection of chapters on diverse topics, including the stability of nanoparticles in food, nanobiosensing for the detection of food contaminants, nanotechnology applications in agriculture, the role of nanotechnology in nutrient delivery, how nanotechnology is applied in dairy products, biofunctional magnetic nanoparticles in food safety, the development of nutraceuticals using nanotechnological tools, and more.
Nanotechnology in the Beverage industry: Fundamentals and Applications looks at how nanotechnology is being used to enhance water quality, as well as how the properties of nanomaterials can be used to create different properties in both alcoholic and no-alcoholic drinks and enhance the biosafety of both drinks and their packaging. This is an important reference for materials scientists, engineers, food scientists and microbiologists who want to learn more about how nanotechnology is being used to enhance beverage products. As active packaging technology, nanotechnology can increase shelf-life and maintain the quality of beverages. In the field of water treatment, nanomaterials offer new routes to address challenges.
Nanotoxicity: Prevention, and Antibacterial Applications of Nanomaterials focuses on the fundamental concepts for cytotoxicity and genotoxicity of nanomaterials. It sheds more light on the underlying phenomena and fundamental mechanisms through which nanomaterials interact with organisms and physiological media. The book provides good guidance for toxic prevention methods and management in the manufacture/application/disposal. The book also discusses the potential applications of nanomaterials-based antibiotics. The potential toxic effects of nanomaterials result not only from the type of base materials, but also from their size/ ligands/surface chemical modifications. This book discusses why different classes of nanomaterials display toxic properties, and what can be done to mitigate this toxicity. It also explores how nanomaterials are being used as antimicrobial agents, being used to purify air and water, and counteract a range of infectious diseases. This is an important reference for materials scientists, environmental scientists and biomedical scientists, who are seeking to gain a greater understanding of how nanomaterials can be used to combat toxic agents, and how the toxicity of nanomaterials themselves can best be mitigated.
This book highlights recent developments related to fabrication and utilization of nanoparticle-engineered metal matrices and their composites linked to the heavy industries, temperature fasteners, high-pressure vessels, and heavy turbines, etc. The mechanical properties of newly developed metallic composites are discussed in terms of tensile modulus, hardness, ductility, crack propagation, elongation, and chemical inertness. This book presents the design, development, and implementation of state-of-the-art methods linked to nanoparticle-reinforced metal nanocomposites for a wide variety of applications. Therefore, in a nutshell, this book provides a unique platform for researchers and professionals in the area of nanoparticle-reinforced metal nanocomposites.
This thesis describes the controlled immobilization of molecules between two cuboidal metal nanoparticles by means of a self-assembly method to control the quantum plasmon resonances. It demonstrates that quantum-plasmonics is possible at length scales that are useful for real applications. Light can interact with certain metals and can be captured in the form of plasmons, which are collective, ultra-fast oscillations of electrons that can be manipulated at the nano-scale. Surface plasmons are considered as a promising phenomenon for potentially bridging the gap between fast-operating-speed optics and nano-scale electronics. Quantum tunneling has been predicted to occur across two closely separated plasmonic resonators at length scales (<0.3 nm) that are not accessible using present-day nanofabrication techniques. Unlike top-down nanofabrication, the molecules between the closely-spaced metal nanoparticles could control the gap sizes down to sub-nanometer scales and act as the frequency controllers in the terahertz regime, providing a new control parameter in the fabrication of electrical circuits facilitated by quantum plasmon tunneling.
Bioimaging is a sophisticated non-invasive and non-destructive technique for direct visualization of biological processes. Highly luminescent quantum dots combined with magnetic nanoparticles or ions form an exciting class of new materials for bioimaging. These materials can be prepared in cost-effective ways and show unique optical behaviours. Magnetic Quantum Dots for Bioimaging explores leading research in the fabrication, characterization, properties, and application of magnetic quantum dots in bioimaging. * Covers synthesis, properties, and bioimaging techniques. * Discusses modern manufacturing technologies and purification of magnetic quantum dots. * Explores thoroughly the properties and extent of magnetization to various imaging techniques. * Describes the biocompatibility, suitability, and toxic effects of magnetic quantum dots. * Reviews recent innovations, applications, opportunities, and future directions in magnetic quantum dots and their surface decorated nanomaterials. This comprehensive reference offers a roadmap of the use of these innovative materials for researchers, academics, technologists, and advanced students working in materials engineering and sensor technology.
Magnetic Nano-and Microwires: Design, Synthesis, Properties and Applications, Second Edition, reviews the growth and processing of nanowires and nanowire heterostructures using such methods as sol-gel and electrodeposition, focused-electron/ion-beam-induced deposition, epitaxial growth by chemical vapor transport, and more. Other sections cover engineering nanoporous anodic alumina, discuss magnetic and transport properties, domains, domain walls in nano-and microwires. and provide updates on skyrmions, domain walls, magnetism and transport, and the latest techniques to characterize and analyze these effects. Final sections cover applications, both current and emerging, and new chapters on memory, sensor, thermoelectric and nanorobotics applications. This book will be an ideal resource for academics and industry professionals working in the disciplines of materials science, physics, chemistry, electrical and electronic engineering and nanoscience.
Nanostructured materials, especially, 1D, 2D and 3D nanostructures, and their engineered architectures are being increasingly used due to their potential to achieve sustainable development in energy and environmental sectors, providing a solution to a range of global challenges. A huge amount of research has been devoted in the recent past on the fine-tuning of nano-architecutres to accomplish innovations in energy storage and conversions, i.e., batteries, supercapacitors, fuel cells, solar cells, and electrochromic devices, bifunctional catalysts for ORR and OER, gas to fuels, liquid to fuels, and photocatalysts, corrosion, electrochemical sensors, and pollution and contaminants removal. Nanomaterials for Sustainable Energy and Environmental Remediation describes the fundamental aspects of a diverse range of nanomaterials for the sustainable development in energy and environmental remediation in a comprehensive manner. Experimental studies of varies nanomaterials will be discussed along with their design and applications, with specific attention to various chemical reactions involving and their challenges for catalysis, energy storage and conversion systems, and removal of pollutants are addressed. This book will also emphasise the challenges with past developments and direction for further research, details pertaining to the current ground - breaking technology and future perspective with multidisciplinary approach on energy, nanobiotechnology and environmental science
Nanomedicines for Breast Cancer Theranostics addresses the translational aspects and clinical perspectives of breast cancer nanomedicine from a multidisciplinary perspective. The book summarizes research efforts at the preclinical and clinical stage of nanostructures and nanomedicine for dealing with the important challenge of nanomedicine translation in breast cancer theranostics. This book is an important resource for those working in both academia and industry, focusing on hot topics in biomaterials, biomedical engineering, drug delivery and oncology.
Cluster Beam Deposition of Functional Nanomaterials and Devices, Volume 15, provides up-to-date information on the CBD of novel nanomaterials and devices. The book offers an overview of gas phase synthesis in a range of nanoparticles, along with discussions on the development of several devices and applications. Applications include, but are not limited to catalysis, smart nanocomposites, nanoprobes, electronic devices, gas sensors and biosensors. This is an important reference source for materials scientists and engineers who want to learn more about this sustainable, innovative manufacturing technology.
Features • Presents an accessible introduction to the topic in addition to more advanced material for specialists in the field. • Covers a broad spectrum of topics this new field. • Contains exciting case studies and examples, such as quantum dots, bionanomaterials, and future perspectives.
Processing of polymer nanocomposites usually requires special attention since the resultant structure-micro- and nano-level, is directly influenced by among other factors, polymer/nano-additive chemistry and the processing strategy. This book consolidates knowledge, from fundamental to product development, on polymer nanocomposites processing with special emphasis on the processing-structure-property-performance relationships in a wide range of polymer nanocomposites. Furthermore, this book focuses on emerging processing technologies such as electrospinning, which has very exciting applications ranging from medical to filtration. Additionally, the important role played by the nanoparticles in polymer blends structures has been illustrated in the current book, with special focus on fundamental aspects and properties of nanoparticles migration and interface crossing in immiscible polymer blend nanocomposites. This book focuses heavily on the processing technologies and strategies and extensively addresses the processing-structure-property-performance relationships in a wide range of polymer nanocomposites, such as commodity polymers (chapter 1), engineering polymers (chapter 2), elastomers (chapter 3), thermosets (chapter 4), biopolymers (chapter 5), polymer blends (chapter 6), and electrospun polymer (chapter 7). The important role played by nanoparticles in polymer blends structures in particular is illustrated. The book is useful to undergraduate and postgraduate students (polymer engineering, materials science & engineering, chemical & process engineering), as well as research & development personnel, engineers, and material scientists.
Photonanotechnology for Therapeutics and Imaging surveys major concepts and recent advances in the use of photonanotechnology with nanomaterials reported in various interdisciplinary fields, including chemistry, materials science, biomedical engineering and biomedicine. This book discusses the impact of this technology on the advancement of therapeutic modalities and imaging methods in cancers, infectious diseases and other serious diseases. Photonanotechnology studies the design principle, application and development of photoactive nanomaterials. It applies light-controlled strategies for the development of nanotherapeutics, imaging agents and diagnostic nanodevices.
Nanosensors for Smart Cities covers the fundamental design concepts and emerging applications of nanosensors for the creation of smart city infrastructures. Examples of major applications include logistics management, where nanosensors could be used in active transport tracking devices for smart tracking and tracing, and in agri-food productions, where nanosensors are used in nanochips for identity, and food inspection, and smart storage. This book is essential reading for researchers working in the field of advanced sensors technology, smart city technology and nanotechnology, and stakeholders involved in city management. Nanomaterials based sensors (nanosensors) can offer many advantages over their microcounterparts, including lower power consumption, high sensitivity, lower concentration of analytes, and smaller interaction distance between object and sensor. With the support of artificial intelligence (AI) tools, such as fuzzy logic, genetic algorithms, neural networks, and ambient-intelligence, sensor systems are becoming smarter.
MXenes offer single step processing, excellent electrical conductivity, easy heat dissipation behavior, and capacitor-like properties and are used in photodetectors, lithium-ion batteries, solar cells, photocatalysis, electrochemiluminescence sensors, and supercapacitors. Because of their superior electrical and thermal conductivities, these composites are an ideal choice in electromagnetic interference (EMI) shielding. MXene Nanocomposites: Design, Fabrication, and Shielding Applications presents a comprehensive overview of these emerging materials, including their underlying chemistry, fabrication strategies, and cutting-edge applications in EMI shielding. * Covers modern fabrication technologies, processing, properties, nanostructure formation, and mechanisms of reinforcement. * Discuss biocompatibility, suitability, and toxic effects. * Details innovations, applications, opportunities, and future directions in EMI shielding applications. This book is aimed at researchers and advanced students in materials science and engineering and is unique in its detailed coverage of MXene-based polymer composites for EMI shielding. |
![]() ![]() You may like...
Mathematics Education in the Early Years…
Christiane Benz, Anna S. Steinweg, …
Hardcover
R4,567
Discovery Miles 45 670
The Legend Of Zola Mahobe - And The…
Don Lepati, Nikolaos Kirkinis
Paperback
![]()
Hiking Beyond Cape Town - 40 Inspiring…
Nina du Plessis, Willie Olivier
Paperback
Toxicity of Building Materials
Fernando Pacheco Torgal, S. Jalali, …
Paperback
Handbook of Forensic Toxicology for…
Veronica Hargrove, D. K. Molina, M.D.
Hardcover
R7,337
Discovery Miles 73 370
|