![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Technology: general issues > Nanotechnology
Miniaturization has revolutionized human affairs by making possible inexpensive integrated electronic circuits comprised of devices and wires with sub-micrometer dimensions. These integrated circuits are now ubiquitous, controlling everything from our automobiles to our toasters. Continued miniaturization, beyond sub-micrometer dimensions, seems likely. And so we are compelled to explore science and technology on a new, yet smaller scale: the nanometer scale. This volume is a survey of the machinery and science of the nanometer scale. Its twenty-two contributing authors, drawn from many different disciplines including atomic physics, microelectronics, polymer chemistry, and bio-physics, delineate the course of current research and articulate a vision for the development of the nanometer frontiers in electronics, mechanics, chemistry, magnetics, materials, and biology. They reveal a world thirty years hence where motors are smaller than the diameter of a human hair; where single-celled organisms are programmed to fabricate materials with nanometer precision; where single atoms are used for computation, and where quantum chaos is the norm. Aimed at the level of comprehension of at least a junior- or senior-level undergraduate science (biology, chemistry, physics, or engineering) student, the book provides a survey of developments within the breadth of the nanotechnology field. The book is thus intended for both students and researchers in tunneling microscopy, polymer chemistry, bio-physics, atomic physics, electrical engineering, mechanical engineering, materials science, condensed matter physics, biology, lithography, and chaos. Mathematical derivations have been minimized, but not eliminted. The book contains many illustrations, some in color.
The ability to arrange precisely designed patterns of nanoparticles into a desired spatial configuration is the key to creating novel nanoscale devices that take advantage of the unique properties of nanomaterials. While two-dimensional arrays of nanoparticles have been demonstrated successfully by various techniques, a controlled way of building ordered arrays of three-dimensional (3D) nanoparticle structures remains challenging. This book describes a new technique called the 'nanoscopic lens' which is able to produce a variety of 3D nano-structures in a controlled manner. This ebook describes the nanoscopic lens technique and how it can serve as the foundation for device development that is not limited to a variety of optical, magnetic and electronic devices, but can also create a wide range of bio-nanoelectronic devices.
This book focuses the recent progress in nanophotonics technology to be used to develop novel nano-optical devices, fabrication technology, and advanced systems. It begins with a review of near-field excitation dynamics in molecules. Further topics include: wavelength up-converting a phonon-assisted excitation process with degenerate beams and non-degenerate beams in dye grains, a fabrication method of semiconductor quantum dots including self-assembly of InAs quantum dots based on the Stranski-Krastanov growth mode, single-nanotube spectroscopy and time-resolved spectroscopy for studying novel excitonic properties of single-walled carbon nanotubes. The striking features of ecxitons in the carbon nanotube, multiple-exciton states, and microfluidic and extended-nano fluidic techniques. These topics are reviewed by nine leading scientists. This overview is a variable resource for engineers and scientists working in the field of nanophotonics.
This book covers synthesis, characterization, and applications of diverse types of nanomaterials. Specifically, it describes carbon, graphene, and graphene oxide-based nanomaterials and their use for environmental remediation; rare-earth ions-activated nanophosphors and their application; lanthanide-based oxides as advanced nanostructured materials for organic decontamination; and advanced functional nanomaterials for pollutant sensing and water remediation. The chapters explore the use of nanomaterials in solid-phase extraction technique, design of colorimetric sensor based on gold nanoparticles, optical sources and waveguides based on flexible 1D nanomaterials, synthesis and property characterization of 2D materials with applications, and the scale effects on the value of the surface energy of a solid. The developments of some nanomaterials such as zinc and nickel sulfides as photocatalysts and electrocatalysts, effects of reducing size and incorporation of nanoadditives, advanced carbon nanomaterials such as carbon nanotubes, carbon nanofibers, and graphene and its derivations as adsorbents, and carbon spheres and carbon soot for tribological applications are also presented in this book. In addition, nanomaterials for concrete coating applications and advances in the processing of high-entropy alloys by means of mechanical alloying are also covered. Subsequently, the use of nanomaterials in endodontics and the use of nanotechnology strategies to enhance restorative resin-based dental nanomaterials are reported.
Energetic ion beam irradiation is the basis of a wide plethora of powerful research- and fabrication-techniques for materials characterisation and processing on a nanometre scale. Materials with tailored optical, magnetic and electrical properties can be fabricated by synthesis of nanocrystals by ion implantation, focused ion beams can be used to machine away and deposit material on a scale of nanometres and the scattering of energetic ions is a unique and quantitative tool for process development in high speed electronics and 3-D nanostructures with extreme aspect radios for tissue engineering and nano-fluidics lab-on-a-chip may be machined using proton beams. This book will benefit practitioners, researchers and graduate students working in the field of ion beams and application and more generally everyone concerned with the broad field of nanoscience and technology.
The Mathematics and Topology of Fullerenes presents a comprehensive overview of scientific and technical innovations in theoretical and experimental studies. Topics included in this multi-author volume are: Clar structures for conjugated nanostructures; counting polynomials of fullerenes; topological indices of fullerenes; the wiener index of nanotubes; toroidal fullerenes and nanostars; C60 Structural relatives: a topological study; local combinatorial characterization of fullerenes; computation of selected topological indices of C60 and C80 Fullerenes via the Gap Program; 4valent- analogues of fullerenes; a detailed atlas of Kekule structures of C60. The Mathematics and Topology of Fullerenes is targeted at advanced graduates and researchers working in carbon materials, chemistry and physics.
Catalysis and Electrocatalysis at Nanoparticle Surfaces illustrates the latest developments in electrochemical nanotechnology, heterogeneous catalysis, surface science, and theoretical modeling. It describes the manipulation, characterization, control, and application of nanoparticles for enhanced catalytic activity and selectivity and presents a range of experimental and synthetic strategies for work in nanoscale surface science. Thisis a comprehensive source for physical, surface, and colloid chemists; materials scientists; interfacial chemists and electrochemists; electrochemical engineers; theoretical physicists; chemical engineers; and upper-level undergraduate and graduate students in these disciplines.
First volume of a 40-volume series on nanoscience and nanotechnology, edited by the renowned scientist Challa S.S.R. Kumar. This handbook gives a comprehensive overview about Raman spectroscopy for the characterization of nanomaterials. Modern applications and state-of-the-art techniques are covered and make this volume essential reading for research scientists in academia and industry.
This book is devoted to a wide range of problems concerning applications of nanomaterials and nanodevices as effective solutions to modern ecological problems. Leading experts in nanoscience and nanotechnology present the key theoretical, experimental and implementation issues related to the creation and utilization of novel nanoscale devices to help ensure ecological security. The authors discuss appropriate nanotechnologies for minimizing various types of risk: to human life, technogenic risk, or indeed terrorist threats. Particular emphasis is placed on defining and studying the required materials properties, and - in the field - on nanoscale devices for sensors and monitoring."
Despite advances in the long-range electrostatic double-layer force, which depends strongly on ionic strength in water by using theoretical models such as DLVO (Derjaguin, Landau, Verwey, and Overbeek), the structure of confined water in air still remains widely unknown and has led to a variety of unexplained phenomena. This book bridges that gap by introducing a newly developed scanning probe miscroscopy (SPM) approach, which enables one to probe confined water at the molecular and atomic scale. Written by the developer of SPM, this book covers this new approach, as well as original approaches to addressing general interfacial water issues. It also introduces the cantilever-based optical interfacial force microscope (COIFM), which was invented by the author along with the methodology. The improved understanding will contribute to liquid-based nano- and bio-technologies such as lab-on-a-chip technologies, nanofluidic devices, dip-pen nanolithography, nano-oxidation, water-based granular interactions, liquid-based nanolubricants, hydration layers in biopolymers, manipulation of biomolecules, protein folding, stability of colloid suspensions, enzyme activity, swelling in clays, development of bioactive surfaces, water columns and ion channeling in membranes and scanning probe microscopy (SPM). It will also contribute to the improved performance of moving components in silicon-based micro-electro-mechanical system (MEMS) devices, where water plays a key role in interfacial interactions.
This book presents the recent progress in the field of nanophotonics. It contains review-like chapters focusing on various but mutually related topics in nanophotonics written by the world's leading scientists. Following the elaboration of the idea of nanophotonics, much theoretical and experimental work has been carried out, and several novel photonic devices, high-resolution fabrication, highly efficient energy conversion, and novel information processing have been developed in these years. Novel theoretical models describing the nanometric light-matter interaction, nonequilibrium statistical mechanical models for photon breeding processes and near-field-assisted chemical reactions as well as light-matter interaction are also explained in this book. It describes dressed photon technology and its applications, including implementation of nanophotonic devices and systems, fabrication methods and performance characteristics of ultrathin, ultraflexible organic light-emitting diodes, organic solar cells and organic transistors.
Handbook of Modern Biophysics brings current biophysics topics into focus, so that biology, medical, engineering, mathematics, and physical-science students or researchers can learn fundamental concepts and the application of new techniques in addressing biomedical challenges. Chapters will develop the conceptual framework of the physics formalism and illustrate the biomedical applications. With the addition of problem sets, guides to further study, and references, the interested reader can continue to independently explore the ideas presented.Volume 5: Modern Tools of BiophysicsEditor: Thomas Jue, PhDIn Modern Tools of Biophysics, a group of prominent professors have provided insights into the tools used in biophysics with respect to the following topics: Wave Theory of Image Formation in a Microscope: Basic Theory and Experiments Computer Simulations and Nonlinear Dynamics of Cardiac Action Potentials Myoglobin and Hemoglobin Contribution to the NIRS Signal in Muscle Anomalous Low Angle X-Ray Scattering of Membrane with Lanthanides Recording of Ionic Currents under Physiological Conditions-Action Potential-Clamping and "Onion-Peeling" Techniques Patch Clamp Technique and Applications About the EditorThomas Jue is a Professor in the Department of Biochemistry and Molecular Medicine at the University of California, Davis. He is an internationally recognized expert in developing and applying magnetic resonance techniques to study animal as well as human physiology in vivo and has published extensively in the field of magnetic resonance spectroscopy and imaging, near-infrared spectroscopy, bioenergetics, cardiovascular regulation, exercise, and marine biology. He served as a Chair of the Biophysics Graduate Group Program at UC Davis, where he started to develop scholarly approaches to educate graduate students with a balance of physical-science/mathematics formalism and biomedical perspective in order to promote interest at the interface of physical science, engineering, mathematics, biology, and medicine. He continues to develop the biophysics curriculum, and the Handbook of Modern Biophysics represents an aspect of that effort.
Smart Buildings: Advanced Materials and Nanotechnology to Improve Energy Efficiency and Environmental Performance presents a thorough analysis of the latest advancements in construction materials and building design that are applied to maximize building efficiency in both new and existing buildings. After a brief introduction on the issues concerning the design process in the third millennium, Part One examines the differences between Zero Energy, Green, and Smart Buildings, with particular emphasis placed on the issue of smart buildings and smart housing, mainly the ‘envelope’ and how to make it more adaptive with the new possibilities offered by nanotechnology and smart materials. Part Two focuses on the last generation of solutions for smart thermal insulation. Based on the results of extensive research into more innovative insulation materials, chapters discuss achievements in nanotechnology, bio-ecological, and phase-change materials. The technical characteristics, performance level, and methods of use for each are described in detail, as are the achievements in the field of green walls and their use as a solution for upgrading the energy efficiency and environmental performance of existing buildings. Finally, Part Three reviews current research on smart windows, with the assumption that transparent surfaces represent the most critical element in the energy balance of the building. Chapters provide an extensive review on the technical features of transparent closures that are currently on the market or under development, from so-called dynamic glazing to bio-adaptive and photovoltaic glazing. The aesthetic potential and performance limits are also be discussed.
This book explores the possibility of using micro/nanostructures formed on the doped ice surface as a novel separation platform. In addition, it provides comprehensive information on the nature of freeze-concentrated solutions (FCSs) and the ice/FCS interface, which play important roles in the natural environment and industrial processes alike. The book proposes a novel size-selective separation approach using channels formed on the doped ice surface. The separation is based on the physical interaction of analytes with channel walls, which is controlled by varying the channel width through temperature and dopant concentration changes. It also shows the precise control of the channel width to be in a range of 200 nm-4 m and demonstrates the size-selective separation of microspheres, cells, and DNA. The physicochemical properties of FCSs are measured to reveal the nature of the ice/FCS interface, and the zeta potentials of ice are measured by determining EOF rates in a microchannel fabricated in the ice. The deprotonation at OH dangling bonds and adsorption of ions are also discussed. The viscosities of FCSs confined in micro/nanospaces are evaluated by means of two spectroscopic methods. When an FCS is confined in small spaces surrounded by ice, the viscosity increases compared to that in a bulk solution. Interestingly, this viscosity enhancement occurs even though its size is on the micrometer scale. These parameters are essential to discussing the unique phenomena occurring in FCSs. This book provides an explanation of the scientific processes taking place in FCSs, and reveals the potential that frozen solutions hold as innovative micro/nanofluidic devices and reaction platforms.
This book focuses on recent advances in the rapidly evolving field of single molecule research. These advances are of importance for the investigation of biopolymers and cellular biochemical reactions, and are essential to the development of quantitative biology. Written by leading experts in the field, the articles cover a broad range of topics, including quantum photonics of organic dyes and inorganic nanoparticles and monitoring of single molecule (enzymatic) reactions.
This book reviews the most recent developments of fluorescent imaging techniques for medicinal chemistry research and biomedical applications, including cell imaging, in vitro diagnosis and in vivo imaging. Fluorescent imaging techniques play an important role in basic research, drug discovery and clinical translation. They have great impact to many fields including chemical biology, cell biology, medical imaging, cancer diagnosis and treatment, pharmaceutical science, among others, and they have facilitated our understanding of diseases and helped to develop many novel powerful tools for imaging and treatment of diseases. This book will appeal to scientists from numerous fields such as chemistry, pharmaceutical science, biology, materials science, and medicine, and it will serve as a very useful and handy resource for readers with different levels of scientific knowledge, ranging from entry level to professional level.
This book highlights the latest advances in AFM nano-manipulation research in the field of nanotechnology. There are numerous uncertainties in the AFM nano-manipulation environment, such as thermal drift, tip broadening effect, tip positioning errors and manipulation instability. This book proposes a method for estimating tip morphology using a blind modeling algorithm, which is the basis of the analysis of the influence of thermal drift on AFM scanning images, and also explains how the scanning image of AFM is reconstructed with better accuracy. Further, the book describes how the tip positioning errors caused by thermal drift and system nonlinearity can be corrected using the proposed landmark observation method, and also explores the tip path planning method in a complex environment. Lastly, it presents an AFM-based nano-manipulation platform to illustrate the effectiveness of the proposed method using theoretical research, such as tip positioning and virtual nano-hand.
When a photon meets a nanostructure, many interesting phenomena occur. This book aims at developing the theories and the applications of photon interactions with nanostructures. The contributors were all participants in the well-known Japanese national research project, "Near-Field Nano-Optics", which ran from 1997 to 2000. The book covers a wide range of disciplines in nano-optics, including the theoretical development of imaging-contrast mechanisms as a result of photon and nanomatter interactions, and discussions on different near-field nanoprobes. Applications of nano-optics to sensing, imaging, analysis, and the fabrication of nanostructures, such as molecules and quantum devices, are also discussed, with a collection of experimental examples.
This book presents a universal mass-production micro/nano integrated fabrication technology, which can be used to realize micro/nano hierarchical structures on Si-based materials and flexible polymeric materials. This fabrication technology has been systematically investigated by using experimental measurements, mechanism analyses, theoretical simulations and so on. Three common materials (i.e., silicon, PDMS and Parylene-C) with micro/nano hierarchical structures have been successfully fabricated, which also show several attractive properties. Furthermore, this book introduces this fabrication technology into microenergy field, and proposes several high-performance nanogenerators, of which practical applications have also been studied in commercial electronic device and biomedical microsystem.
This volume assembles an interdisciplinary team of leading academics, industry figures, policymakers and NGO s to consider the legal, ethical and social issues that are raised by innovations in nanoscience and nanotechnology. By bringing together international experts from a diverse range of fields this volume addresses the implications and impact that nanotechnology has on society. Through the exploration of six key themes the contributors analyse both the impact of nanotechnology and the emergence of the concept of nanoethics. Each section includes authors from both sides of the political and scientific divide incorporating both positive and negative perspectives on nanotechnology, as well as including discussions of associated concepts such as converging technologies. The result provides for the widest and most balanced discussion of these issues to date"
Even though there is no generally accepted definition of nanotechnologies to be defined as distinct discipline there is an emerging consensus that their advent and development is a growing in importance factor of the contemporary and future technological civilization. One of these most fundamental issues we are confronted with is the compatibility with life itself. From single cell organisms to humans, carbon is a key building block of all molecular structures of life. In contrast the man created electronic industry to build on other elements, of which silicon is the most common. Both carbon and silicon create molecular chains, although different in their internal structure. All life is built from carbon-based chains. As long as the man built technological products do not directly interfere with the physiology of life the associated risks from them are relatively easy to identify. They are primarily in the environmental pollution and the possibility of upsetting the natural balance of biocoenosis, on a planetary scale. The basic life functions are still not directly subverted. We can use TV, computers, drive cars and use other technological utilities without fear of direct interference with our cellular functions. This is in particular because all these technological utilities are many orders of magnitude larger than typical scales of biological activity. Most of biological activity, from fermentative catalysis to DNA replication takes place on nanoscale. The situation is radically different when the technological goals are building nanoscale size products. All biological processes take place on nanoscale.
This book presents 8 selected reviews from the 2013 International Conference on Manufacturing, Optimization, Industrial and Material Engineering, held in Bandung, Indonesia, 09-10 March 2013. The chapters focus on new advances and research results in the fields of Nanotechnology and Materials Science, from metals to thin films technology.
Nanorobotics and Nanodiagnostics in Integrative Biology and Biomedicine "Nanorobotics and nanodiagnostics" can be defined as a new generation of biohybrid and nanorobotics that translate fundamental biological principles into engineering design rules, or integrative living components into synthetic structures to create biorobots and nanodiagnotics that perform like natural systems. Nanorobots or nanobots are structured of a nanoscale made of individual assemblies. They can be termed as intelligent systems manufactured with self-assembly strategies by chemical, physical and biological approaches. The nanorobot can determine the structure and enhance the adaptability to the environment in interdisciplinary tasks. "Nanorobotics and nanodiagnostics" is a new generation of biohybrid that translates fundamental biological principles into engineering design rules to create biorobots that perform like natural systems. These biorobotics and diagnostics can now perform various missions to be accomplished certain tasks in the research areas such as integrative biology and biomedicine. "Nanorobotics and Nanodiagnostics in Integrative Biology and Biomedicine" sheds light on a comprehensive overview of the multidisciplinary areas that explore nanotherapeutics and nanorobotic manipulation in biology and medicine. It provides up-to-date knowledge of the promising fields of integrative biology and biomedicine for nano-assisted biorobotics and diagnostics to detect and treat diseases that will enable new scientific discoveries.
This thesis systematically introduces readers to a new metal-organic framework approach to fabricating nanostructured materials for electrochemical applications. Based on the metal-organic framework (MOF) approach, it also demonstrates the latest ideas on how to create optimal MOF and MOF-derived nanomaterials for electrochemical reactions under controlled conditions. The thesis offers a valuable resource for researchers who want to understand electrochemical reactions at nanoscale and optimize materials from rational design to achieve enhanced electrochemical performance. It also serves as a useful reference guide to fundamental research on advanced electrochemical energy storage materials and the synthesis of nanostructured materials.
The major problem facing new energy conversion and storage technologies remains device ef?ciency. Projects based on nanostructured materials can yield improved performance in devices involving electrochemical reactions and heterogeneous catalysis, such as fuel and solar cells, batteries, etc. Nanoscale structures drama- cally alter the surface reaction rates and electrical transport throughout the material, causing a dramatic improvement in energy storage, conversion, and generation. Furthermore, the design of nanoscale materials to be applied in alternative energy devices is a predictable way to develop a wide range of new technologies for a more sustainable future. Therefore, the goal of this book is to present basic fundamentals and the most relevant properties of nanostructured materials in order to improve alternative energy devices. This book begins with a chapter by Gratzel .. summarizing the use of mesoscopic thin ?lms and hybrid materials in the development of new kinds of regenerative photoelectrochemical devices. Applications include high-ef?ciency solar cells. In chapter two, Ribeiro and Leite describe assembly and properties of nanop- ticles. The chapter presents a review on the properties and main features of nanoscale materials, emphasizing the dependence of key properties on size for energy purposes. A general description is also given of nanoparticle synthesi- tion methods (mainly oxides), focusing on advances in tailoring controlled shape nanostructures. |
![]() ![]() You may like...
The Science and Best Practices of…
Timothy D. Ludwig, Matthew M. Laske
Paperback
R1,073
Discovery Miles 10 730
Intelligent Fixtures for the…
H.-Christian Moehring, Petra Wiederkehr, …
Hardcover
R4,204
Discovery Miles 42 040
Research Anthology on Early Childhood…
Information R Management Association
Hardcover
R8,581
Discovery Miles 85 810
Making Sense - Small-Group Comprehension…
Juli Kendall, Outey Khuon
Paperback
R889
Discovery Miles 8 890
|